Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 June 2024 | Story Leonie Bolleurs | Photo Kaleidoscope Studios
Prof Hendrik Swart
Prof Hendrik Swart’s prolific publication record, the high impact of his work, and the outstanding quality of his scholarly contributions have placed him among the top 0,05% of all scholars worldwide.

ScholarGPS awarded Prof Hendrik Swart, Senior Professor in the Department of Physics at the University of the Free State (UFS), Highly Ranked Scholar status.

ScholarGPS celebrates Highly Ranked Scholars™ for their performance in various fields, disciplines, and specialties. Prof Swart’s prolific publication record, the high impact of his work, and the outstanding quality of his scholarly contributions have placed him among the top 0,05% of all scholars worldwide.

Prof Swart received Highly Ranked Scholar status (Lifetime) for ranking 16th in the discipline of Phosphor. Highly Ranked Scholars™ – Lifetime refers to distinguished authors, including those who are currently active, retired, or deceased. These scholars are recognised for their exceptional lifetime scholarly contributions, placing them in the top 0,05% of all scholars. Their achievements are evaluated across four categories: overall (across all fields), within their specific field of study, within their particular discipline, and across all specialties they are associated with.

Additionally, Prof Swart received Highly Ranked Scholar status (prior five years) for ranking first in Condensed Matter Physics, 42nd in Physics, 155th in Sensor, 207th in Physical Science and Mathematics, and 969th in all fields.

Scientific profile and credibility

ScholarGPS is a California-based company that applies artificial intelligence, data mining, machine learning, and other data science techniques to its massive database of more than 200 million publications and 3 billion citations to rank more than 30 million scholars and 55 000 institutions worldwide. They categorise more than 200 million scholarly publications into specific academic specialties. These specialties are further organised into 177 disciplines and 14 overarching fields. As a result of this extensive classification effort, scholars who are considered highly ranked within their respective fields can now be identified with greater precision. This identification is done not only within each academic specialty, but also across disciplines and fields, providing a comprehensive view of scholarly achievement and expertise. This system allows for the identification of top scholars within various areas of academic research in a way that was not possible before.

Prof Swart, who is an NRF B1-rated researcher, currently also holds the SARChI Research Chair: Solid-state Luminescent and Advanced Materials (2023-2027). On receiving this award from ScholarGPS, he says it is always a privilege to be recognised as one of the top scholars in your specific field, especially at this late stage of his career.

Professionally, Prof Swart says this award may boost his scientific profile and credibility in the academic community, potentially leading to more collaborations and partnerships.

In the field of condensed matter physics, the impact of his work is specifically noteworthy in the study of defects and impurities within semiconductors, along with their practical applications in optoelectronic devices. Moreover, his significant contributions extend to understanding optical and electronic properties at the nanoscale, bearing implications for the development of semiconductor technology, including light-emitting diodes (LEDs), photovoltaic cells, and quantum dots.

Primarily focused on mentorship

He believes his successes in physics and advances in understanding the universe are the result of a combination of variables, including innovative research, collaboration and networking, mentorship, effective communication, persistence, and resilience. “I am primarily focused on mentorship, which is critical to developing the next generation of physicists and creating a supportive environment for learning and discovery, as well as conducting groundbreaking research and making novel discoveries that are critical to pushing the boundaries of physics. I am always searching for opportunities to collaborate with other scholars, both inside and outside my discipline, which will result in constructive exchange of ideas, interdisciplinary discoveries, and collective problem solving.”

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept