Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 June 2024 | Story Leonie Bolleurs | Photo Kaleidoscope Studios
Prof Hendrik Swart
Prof Hendrik Swart’s prolific publication record, the high impact of his work, and the outstanding quality of his scholarly contributions have placed him among the top 0,05% of all scholars worldwide.

ScholarGPS awarded Prof Hendrik Swart, Senior Professor in the Department of Physics at the University of the Free State (UFS), Highly Ranked Scholar status.

ScholarGPS celebrates Highly Ranked Scholars™ for their performance in various fields, disciplines, and specialties. Prof Swart’s prolific publication record, the high impact of his work, and the outstanding quality of his scholarly contributions have placed him among the top 0,05% of all scholars worldwide.

Prof Swart received Highly Ranked Scholar status (Lifetime) for ranking 16th in the discipline of Phosphor. Highly Ranked Scholars™ – Lifetime refers to distinguished authors, including those who are currently active, retired, or deceased. These scholars are recognised for their exceptional lifetime scholarly contributions, placing them in the top 0,05% of all scholars. Their achievements are evaluated across four categories: overall (across all fields), within their specific field of study, within their particular discipline, and across all specialties they are associated with.

Additionally, Prof Swart received Highly Ranked Scholar status (prior five years) for ranking first in Condensed Matter Physics, 42nd in Physics, 155th in Sensor, 207th in Physical Science and Mathematics, and 969th in all fields.

Scientific profile and credibility

ScholarGPS is a California-based company that applies artificial intelligence, data mining, machine learning, and other data science techniques to its massive database of more than 200 million publications and 3 billion citations to rank more than 30 million scholars and 55 000 institutions worldwide. They categorise more than 200 million scholarly publications into specific academic specialties. These specialties are further organised into 177 disciplines and 14 overarching fields. As a result of this extensive classification effort, scholars who are considered highly ranked within their respective fields can now be identified with greater precision. This identification is done not only within each academic specialty, but also across disciplines and fields, providing a comprehensive view of scholarly achievement and expertise. This system allows for the identification of top scholars within various areas of academic research in a way that was not possible before.

Prof Swart, who is an NRF B1-rated researcher, currently also holds the SARChI Research Chair: Solid-state Luminescent and Advanced Materials (2023-2027). On receiving this award from ScholarGPS, he says it is always a privilege to be recognised as one of the top scholars in your specific field, especially at this late stage of his career.

Professionally, Prof Swart says this award may boost his scientific profile and credibility in the academic community, potentially leading to more collaborations and partnerships.

In the field of condensed matter physics, the impact of his work is specifically noteworthy in the study of defects and impurities within semiconductors, along with their practical applications in optoelectronic devices. Moreover, his significant contributions extend to understanding optical and electronic properties at the nanoscale, bearing implications for the development of semiconductor technology, including light-emitting diodes (LEDs), photovoltaic cells, and quantum dots.

Primarily focused on mentorship

He believes his successes in physics and advances in understanding the universe are the result of a combination of variables, including innovative research, collaboration and networking, mentorship, effective communication, persistence, and resilience. “I am primarily focused on mentorship, which is critical to developing the next generation of physicists and creating a supportive environment for learning and discovery, as well as conducting groundbreaking research and making novel discoveries that are critical to pushing the boundaries of physics. I am always searching for opportunities to collaborate with other scholars, both inside and outside my discipline, which will result in constructive exchange of ideas, interdisciplinary discoveries, and collective problem solving.”

News Archive

Research into veld fires in grassland can now help with scientifically-grounded evidence
2015-04-10

While cattle and game farmers are rejoicing in the recent rains which large areas of the country received in the past growing season, an expert from the University of the Free State’s Department of Animal, Wildlife, and Grassland Sciences, says that much of the highly inflammable material now available could lead to large-scale veld fires this coming winter.

Prof Hennie Snyman, professor and  researcher in the Department of Animal, Wildlife, and Grassland Sciences, warns that cattle and game farmers should be aware, in good time, of this problem which is about to rear its head. He proposes that farmers must burn firebreaks as a precaution.

At present, Prof Snyman focuses his research on the impact of fire and burning on the functioning of the grassland ecosystem, especially in the drier grassland regions.

He says the impact of fire on the functioning of ecosystems in the ‘sour’ grassland areas of Southern Africa (which includes Kwazulu-Natal, Limpopo, Mpumalanga, the Eastern Cape, and the Harrismith environs) is already well established, but less information  is available for ‘sweet’ semi-arid grassland areas. According to Prof Snyman, there is no reason to burn grassland in this semi-arid area. Grazing by animals can be effectively used because of the high quality material without having to burn it off. In the sourer pasturage, fire may well form part of the functioning of the grassland ecosystem in view of the fact that a quality problem might develop after which the grass must rejuvenate by letting it burn.

Prof Snyman, who has already been busy with the research for ten years, says quantified data on the impact of fire on the soil and plants were not available previously for the semi-arid grassland areas. Fires start frequently because of lightning, carelessness, freak accidents, or damaged power lines, and farmers must be recompensed for this damage.

The shortage of proper research on the impact of fires on soil and plants has led to burnt areas not being withdrawn from grazing for long enough. The lack of information has also led to farmers, who have lost grazing to fires, not being compensated fairly or even being over-compensated.

“When above-and below-ground plant production, together with efficient water usage, is taken into account, burnt grassland requires at least two full growing seasons to recover completely.”       

Prof Snyman says farmers frequently make the mistake of allowing animals to graze on burnt grassland as soon as it begins to sprout, causing considerable damage to the plants.

“Plant roots are more sensitive to fire than the above-ground plant material. This is the reason why seasonal above-ground production losses from fire in the first growing season after the fire can amount to half of the unburnt veld. The ecosystem must first recover completely in order to be productive and sustainable again for the long term. The faster burnt veld is grazed again, the longer the ecosystem takes to recover completely, lengthening the problem with fodder shortages further.  

Prof Snyman feels that fire as a management tool in semi-arid grassland is questionable if there is no specific purpose for it, as it can increase ecological and financial risk management in the short term.

Prof Snyman says more research is needed to quantify the impact of runaway fires on both grassland plant productivity and soil properties in terms of different seasonal climatic variations.

“The current information may already serve as valuable guidelines regarding claims arising from unforeseen fires, which often amount to thousands of rand, and are sometimes based on unscientific evidence.”

Prof Snyman’s research findings have been used successfully as guidelines for compensation aspects in several court cases.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept