Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 June 2024 | Story Leonie Bolleurs | Photo Kaleidoscope Studios
Prof Hendrik Swart
Prof Hendrik Swart’s prolific publication record, the high impact of his work, and the outstanding quality of his scholarly contributions have placed him among the top 0,05% of all scholars worldwide.

ScholarGPS awarded Prof Hendrik Swart, Senior Professor in the Department of Physics at the University of the Free State (UFS), Highly Ranked Scholar status.

ScholarGPS celebrates Highly Ranked Scholars™ for their performance in various fields, disciplines, and specialties. Prof Swart’s prolific publication record, the high impact of his work, and the outstanding quality of his scholarly contributions have placed him among the top 0,05% of all scholars worldwide.

Prof Swart received Highly Ranked Scholar status (Lifetime) for ranking 16th in the discipline of Phosphor. Highly Ranked Scholars™ – Lifetime refers to distinguished authors, including those who are currently active, retired, or deceased. These scholars are recognised for their exceptional lifetime scholarly contributions, placing them in the top 0,05% of all scholars. Their achievements are evaluated across four categories: overall (across all fields), within their specific field of study, within their particular discipline, and across all specialties they are associated with.

Additionally, Prof Swart received Highly Ranked Scholar status (prior five years) for ranking first in Condensed Matter Physics, 42nd in Physics, 155th in Sensor, 207th in Physical Science and Mathematics, and 969th in all fields.

Scientific profile and credibility

ScholarGPS is a California-based company that applies artificial intelligence, data mining, machine learning, and other data science techniques to its massive database of more than 200 million publications and 3 billion citations to rank more than 30 million scholars and 55 000 institutions worldwide. They categorise more than 200 million scholarly publications into specific academic specialties. These specialties are further organised into 177 disciplines and 14 overarching fields. As a result of this extensive classification effort, scholars who are considered highly ranked within their respective fields can now be identified with greater precision. This identification is done not only within each academic specialty, but also across disciplines and fields, providing a comprehensive view of scholarly achievement and expertise. This system allows for the identification of top scholars within various areas of academic research in a way that was not possible before.

Prof Swart, who is an NRF B1-rated researcher, currently also holds the SARChI Research Chair: Solid-state Luminescent and Advanced Materials (2023-2027). On receiving this award from ScholarGPS, he says it is always a privilege to be recognised as one of the top scholars in your specific field, especially at this late stage of his career.

Professionally, Prof Swart says this award may boost his scientific profile and credibility in the academic community, potentially leading to more collaborations and partnerships.

In the field of condensed matter physics, the impact of his work is specifically noteworthy in the study of defects and impurities within semiconductors, along with their practical applications in optoelectronic devices. Moreover, his significant contributions extend to understanding optical and electronic properties at the nanoscale, bearing implications for the development of semiconductor technology, including light-emitting diodes (LEDs), photovoltaic cells, and quantum dots.

Primarily focused on mentorship

He believes his successes in physics and advances in understanding the universe are the result of a combination of variables, including innovative research, collaboration and networking, mentorship, effective communication, persistence, and resilience. “I am primarily focused on mentorship, which is critical to developing the next generation of physicists and creating a supportive environment for learning and discovery, as well as conducting groundbreaking research and making novel discoveries that are critical to pushing the boundaries of physics. I am always searching for opportunities to collaborate with other scholars, both inside and outside my discipline, which will result in constructive exchange of ideas, interdisciplinary discoveries, and collective problem solving.”

News Archive

Oxford professor unlocks secrets of DNA
2017-03-31

Description: Oxford professor unlocks secrets of DNA Tags: Oxford professor unlocks secrets of DNA

From left are: Dr Cristian Capelli, Associate Professor
of Human Evolution at Oxford University;
Dr Karen Ehlers, Senior Lecturer and Prof Paul Grobler,
both from the Department of Genetics at the UFS.
Photo: Siobhan Canavan

Many people are interested to know more about their history and origins, and with the help of genetics, it is possible to provide more information about one’s roots.

During a lecture at the Department of Genetics at the University of the Free State (UFS), Dr Cristian Capelli, Associate Professor of Human Evolution at Oxford University in the UK, addressed staff members and students on the history of our species.

Reconstructing the history of human population
With his research, titled: People on the move: population structure and gene-flow in Southern Africa, Dr Capelli looks at reconstructing the history of human populations, focusing mainly on how the different human populations are related, as well as how they exchange genes.

He said this research could be of great significance to the medical field too. “Knowing what the genetic make-up of individuals is, can give us some information about their susceptibility to diseases, or how they would react to a given medicine. Therefore, this knowledge can be used to inform health-related policies.”

Combining individual histories of multiple people
To understand this research more clearly, Dr Capelli explained it in terms of DNA and how every individual receives half of their DNA from their mother and half from their father just as their parents had received theirs from their parents. And so it goes from generation after generation. Each individual stores a part of their ancestors’ DNA which makes up the individual genetic history of each person.

“If we combine these individual histories by looking at the DNA of multiple people, we can identify the occurrences that are shared across individuals and therefore reconstruct the history of a population, and in the same way on a larger scale, the history of our own species, homo sapiens.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept