Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2024 | Story Leonie Bolleurs | Photo Sonia Small
Eco Vehicle Race 2024
This year's Eco-Vehicle Skills Programme saw remarkable participation. A total of 148 students completed the programme successfully.

For the past seven years, the University of the Free State’s (UFS) Kovsie ACT has proudly hosted the successful Eco-Vehicle Race. This event has grown into a major highlight, thanks to the significant support from MerSETA (Manufacturing, Engineering and Related Services), which has enabled the development of a comprehensive skills programme focused on sustainable energy and eco-vehicle technology.

In 2020, MerSETA's funding allowed Kovsie ACT to create a detailed skills initiative culminating in the exciting 2021 eco-vehicle race. Over nine months, 150 students received extensive training in eco-vehicle technology. This programme provided students with both theoretical knowledge and practical experience, preparing them not only for the competition but also for real-world applications of sustainable energy solutions.

Dr WP Wahl, Director of Student Life, emphasises the value of this initiative, saying, “This effort provides students with a set of skills that will help position them in the labour market. They are equipped with basic knowledge and abilities in sustainable energy, enabling them not only to compete in the eco-vehicle race but also to comprehend the inner workings of the vehicle.”

CUT Team 4: Overall winner of Kovsie ACT’s Eco-Vehicle Race 2024

According to Teddy Sibiya from the Kovsie ACT office, this year's Eco-Vehicle Skills Programme saw remarkable participation and achievements. A total of 148 students - 118 from the UFS and 30 from the Central University of Technology (CUT) - completed the programme successfully. Additionally, 10 engineering mediators completed the Mediated Learning Experience course, providing mentorship essential to the students.

In the 2024 Kovsie ACT Eco-Vehicle Race, CUT Team 4 emerged as the overall winner. Kovsie Q secured second place and East College took third place. North College won the Spirit Cup and was announced as the pitstop winner alongside East College.

In the Obstacle Race, which tested teams' control over their cars through various challenges, CUT Team 4 claimed the winning title. They also came in first place in the Endurance Race, where the objective was to complete as many laps as possible using the least amount of energy in 45 minutes.

The race took place at the UFS’s Bloemfontein Campus on Akademie Avenue, next to the George du Toit Administration Building, with spectators watching from the Red Square parking area.

Eco-Vehicle Sustainable Skills Programme 2.0 introduced

Sibiya announced the next phase of the journey - the Eco-Vehicle Sustainable Skills Programme 2.0. “With continued support from MerSETA, we have expanded our partnerships to include Nelson Mandela University and will continue to involve students from the Central University of Technology.”

“In the next phase, the focus is on developing a new eco-vehicle prototype and creating an advanced skills programme around it,” adds Sibiya. “We aim to debut and race this new eco-vehicle by 2025, continuing our commitment to innovation and sustainable energy education.”

Dr Wahl elaborates, “Students will be taught the same skills, but the learning experience will be deepened. The skills programme consists of five cycles. In cycle one, the students build a race car on a small scale that includes a charging station and a small solar panel. In cycle two, students learn to programme the small-scale racing car from their cell phones or laptops. In cycles three and four, they build the larger race cars with battery packs and solar panels. All of these come together in cycle five during the Eco-Vehicle race when the energy conservation of the cars is tested.

Support from sponsors

Several sponsors were involved in this year’s Eco-Vehicle Race. OFS Fire supported the race with equipment and certified training for all the participating students. Several of the teams also secured sponsorships: East College from Deluxe Grills, South Campus from SA Truck Bodies, West College from Mpeki Tsh Trading and Project, and the CUT Teams from the South African Institute of Electrical Engineers (SAIEE). Haval also exhibited a car at the event. 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept