Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2024 | Story Leonie Bolleurs | Photo Sonia Small
Eco Vehicle Race 2024
This year's Eco-Vehicle Skills Programme saw remarkable participation. A total of 148 students completed the programme successfully.

For the past seven years, the University of the Free State’s (UFS) Kovsie ACT has proudly hosted the successful Eco-Vehicle Race. This event has grown into a major highlight, thanks to the significant support from MerSETA (Manufacturing, Engineering and Related Services), which has enabled the development of a comprehensive skills programme focused on sustainable energy and eco-vehicle technology.

In 2020, MerSETA's funding allowed Kovsie ACT to create a detailed skills initiative culminating in the exciting 2021 eco-vehicle race. Over nine months, 150 students received extensive training in eco-vehicle technology. This programme provided students with both theoretical knowledge and practical experience, preparing them not only for the competition but also for real-world applications of sustainable energy solutions.

Dr WP Wahl, Director of Student Life, emphasises the value of this initiative, saying, “This effort provides students with a set of skills that will help position them in the labour market. They are equipped with basic knowledge and abilities in sustainable energy, enabling them not only to compete in the eco-vehicle race but also to comprehend the inner workings of the vehicle.”

CUT Team 4: Overall winner of Kovsie ACT’s Eco-Vehicle Race 2024

According to Teddy Sibiya from the Kovsie ACT office, this year's Eco-Vehicle Skills Programme saw remarkable participation and achievements. A total of 148 students - 118 from the UFS and 30 from the Central University of Technology (CUT) - completed the programme successfully. Additionally, 10 engineering mediators completed the Mediated Learning Experience course, providing mentorship essential to the students.

In the 2024 Kovsie ACT Eco-Vehicle Race, CUT Team 4 emerged as the overall winner. Kovsie Q secured second place and East College took third place. North College won the Spirit Cup and was announced as the pitstop winner alongside East College.

In the Obstacle Race, which tested teams' control over their cars through various challenges, CUT Team 4 claimed the winning title. They also came in first place in the Endurance Race, where the objective was to complete as many laps as possible using the least amount of energy in 45 minutes.

The race took place at the UFS’s Bloemfontein Campus on Akademie Avenue, next to the George du Toit Administration Building, with spectators watching from the Red Square parking area.

Eco-Vehicle Sustainable Skills Programme 2.0 introduced

Sibiya announced the next phase of the journey - the Eco-Vehicle Sustainable Skills Programme 2.0. “With continued support from MerSETA, we have expanded our partnerships to include Nelson Mandela University and will continue to involve students from the Central University of Technology.”

“In the next phase, the focus is on developing a new eco-vehicle prototype and creating an advanced skills programme around it,” adds Sibiya. “We aim to debut and race this new eco-vehicle by 2025, continuing our commitment to innovation and sustainable energy education.”

Dr Wahl elaborates, “Students will be taught the same skills, but the learning experience will be deepened. The skills programme consists of five cycles. In cycle one, the students build a race car on a small scale that includes a charging station and a small solar panel. In cycle two, students learn to programme the small-scale racing car from their cell phones or laptops. In cycles three and four, they build the larger race cars with battery packs and solar panels. All of these come together in cycle five during the Eco-Vehicle race when the energy conservation of the cars is tested.

Support from sponsors

Several sponsors were involved in this year’s Eco-Vehicle Race. OFS Fire supported the race with equipment and certified training for all the participating students. Several of the teams also secured sponsorships: East College from Deluxe Grills, South Campus from SA Truck Bodies, West College from Mpeki Tsh Trading and Project, and the CUT Teams from the South African Institute of Electrical Engineers (SAIEE). Haval also exhibited a car at the event. 

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept