Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2024 | Story Leonie Bolleurs | Photo Sonia Small
Eco Vehicle Race 2024
This year's Eco-Vehicle Skills Programme saw remarkable participation. A total of 148 students completed the programme successfully.

For the past seven years, the University of the Free State’s (UFS) Kovsie ACT has proudly hosted the successful Eco-Vehicle Race. This event has grown into a major highlight, thanks to the significant support from MerSETA (Manufacturing, Engineering and Related Services), which has enabled the development of a comprehensive skills programme focused on sustainable energy and eco-vehicle technology.

In 2020, MerSETA's funding allowed Kovsie ACT to create a detailed skills initiative culminating in the exciting 2021 eco-vehicle race. Over nine months, 150 students received extensive training in eco-vehicle technology. This programme provided students with both theoretical knowledge and practical experience, preparing them not only for the competition but also for real-world applications of sustainable energy solutions.

Dr WP Wahl, Director of Student Life, emphasises the value of this initiative, saying, “This effort provides students with a set of skills that will help position them in the labour market. They are equipped with basic knowledge and abilities in sustainable energy, enabling them not only to compete in the eco-vehicle race but also to comprehend the inner workings of the vehicle.”

CUT Team 4: Overall winner of Kovsie ACT’s Eco-Vehicle Race 2024

According to Teddy Sibiya from the Kovsie ACT office, this year's Eco-Vehicle Skills Programme saw remarkable participation and achievements. A total of 148 students - 118 from the UFS and 30 from the Central University of Technology (CUT) - completed the programme successfully. Additionally, 10 engineering mediators completed the Mediated Learning Experience course, providing mentorship essential to the students.

In the 2024 Kovsie ACT Eco-Vehicle Race, CUT Team 4 emerged as the overall winner. Kovsie Q secured second place and East College took third place. North College won the Spirit Cup and was announced as the pitstop winner alongside East College.

In the Obstacle Race, which tested teams' control over their cars through various challenges, CUT Team 4 claimed the winning title. They also came in first place in the Endurance Race, where the objective was to complete as many laps as possible using the least amount of energy in 45 minutes.

The race took place at the UFS’s Bloemfontein Campus on Akademie Avenue, next to the George du Toit Administration Building, with spectators watching from the Red Square parking area.

Eco-Vehicle Sustainable Skills Programme 2.0 introduced

Sibiya announced the next phase of the journey - the Eco-Vehicle Sustainable Skills Programme 2.0. “With continued support from MerSETA, we have expanded our partnerships to include Nelson Mandela University and will continue to involve students from the Central University of Technology.”

“In the next phase, the focus is on developing a new eco-vehicle prototype and creating an advanced skills programme around it,” adds Sibiya. “We aim to debut and race this new eco-vehicle by 2025, continuing our commitment to innovation and sustainable energy education.”

Dr Wahl elaborates, “Students will be taught the same skills, but the learning experience will be deepened. The skills programme consists of five cycles. In cycle one, the students build a race car on a small scale that includes a charging station and a small solar panel. In cycle two, students learn to programme the small-scale racing car from their cell phones or laptops. In cycles three and four, they build the larger race cars with battery packs and solar panels. All of these come together in cycle five during the Eco-Vehicle race when the energy conservation of the cars is tested.

Support from sponsors

Several sponsors were involved in this year’s Eco-Vehicle Race. OFS Fire supported the race with equipment and certified training for all the participating students. Several of the teams also secured sponsorships: East College from Deluxe Grills, South Campus from SA Truck Bodies, West College from Mpeki Tsh Trading and Project, and the CUT Teams from the South African Institute of Electrical Engineers (SAIEE). Haval also exhibited a car at the event. 

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept