Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2024 | Story Leonie Bolleurs | Photo Sonia Small
Eco Vehicle Race 2024
This year's Eco-Vehicle Skills Programme saw remarkable participation. A total of 148 students completed the programme successfully.

For the past seven years, the University of the Free State’s (UFS) Kovsie ACT has proudly hosted the successful Eco-Vehicle Race. This event has grown into a major highlight, thanks to the significant support from MerSETA (Manufacturing, Engineering and Related Services), which has enabled the development of a comprehensive skills programme focused on sustainable energy and eco-vehicle technology.

In 2020, MerSETA's funding allowed Kovsie ACT to create a detailed skills initiative culminating in the exciting 2021 eco-vehicle race. Over nine months, 150 students received extensive training in eco-vehicle technology. This programme provided students with both theoretical knowledge and practical experience, preparing them not only for the competition but also for real-world applications of sustainable energy solutions.

Dr WP Wahl, Director of Student Life, emphasises the value of this initiative, saying, “This effort provides students with a set of skills that will help position them in the labour market. They are equipped with basic knowledge and abilities in sustainable energy, enabling them not only to compete in the eco-vehicle race but also to comprehend the inner workings of the vehicle.”

CUT Team 4: Overall winner of Kovsie ACT’s Eco-Vehicle Race 2024

According to Teddy Sibiya from the Kovsie ACT office, this year's Eco-Vehicle Skills Programme saw remarkable participation and achievements. A total of 148 students - 118 from the UFS and 30 from the Central University of Technology (CUT) - completed the programme successfully. Additionally, 10 engineering mediators completed the Mediated Learning Experience course, providing mentorship essential to the students.

In the 2024 Kovsie ACT Eco-Vehicle Race, CUT Team 4 emerged as the overall winner. Kovsie Q secured second place and East College took third place. North College won the Spirit Cup and was announced as the pitstop winner alongside East College.

In the Obstacle Race, which tested teams' control over their cars through various challenges, CUT Team 4 claimed the winning title. They also came in first place in the Endurance Race, where the objective was to complete as many laps as possible using the least amount of energy in 45 minutes.

The race took place at the UFS’s Bloemfontein Campus on Akademie Avenue, next to the George du Toit Administration Building, with spectators watching from the Red Square parking area.

Eco-Vehicle Sustainable Skills Programme 2.0 introduced

Sibiya announced the next phase of the journey - the Eco-Vehicle Sustainable Skills Programme 2.0. “With continued support from MerSETA, we have expanded our partnerships to include Nelson Mandela University and will continue to involve students from the Central University of Technology.”

“In the next phase, the focus is on developing a new eco-vehicle prototype and creating an advanced skills programme around it,” adds Sibiya. “We aim to debut and race this new eco-vehicle by 2025, continuing our commitment to innovation and sustainable energy education.”

Dr Wahl elaborates, “Students will be taught the same skills, but the learning experience will be deepened. The skills programme consists of five cycles. In cycle one, the students build a race car on a small scale that includes a charging station and a small solar panel. In cycle two, students learn to programme the small-scale racing car from their cell phones or laptops. In cycles three and four, they build the larger race cars with battery packs and solar panels. All of these come together in cycle five during the Eco-Vehicle race when the energy conservation of the cars is tested.

Support from sponsors

Several sponsors were involved in this year’s Eco-Vehicle Race. OFS Fire supported the race with equipment and certified training for all the participating students. Several of the teams also secured sponsorships: East College from Deluxe Grills, South Campus from SA Truck Bodies, West College from Mpeki Tsh Trading and Project, and the CUT Teams from the South African Institute of Electrical Engineers (SAIEE). Haval also exhibited a car at the event. 

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept