Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 June 2024 | Story Martinette Brits | Photo Supplied
Arran Wood pictured with Prof Jan Smith
Arran Wood pictured with Prof Jan Smith, Senior Lecturer at the Department of Architecture, in front of his project.

A former Master’s student in Architecture at the University of the Free State (UFS) has recently been honoured with the esteemed Corobrik National Student Architecture Award. The 2023 grand prize was awarded to Arran Wood from UFS for his project "Spectral Flesh – Remembrance," which explores South Africa's forgotten nuclear history.

Corobrik’s vision for this competition is to provide up-and-coming architecture students a platform to showcase their architectural talent and creativity. The eight finalists were chosen by major South African universities, each selecting its best Master’s architectural student to participate in the awards.

The eight regional finalists had the opportunity to present their theses to an esteemed panel of judges, including Carin Smuts from CS Studio Architects, Somers Govender from Artek 4 Architects and Rudolf Roos from HDG Pretoria.

Unveiling forgotten conflict: Architecture as a mediator and reminder

Wood’s project delves into the role architecture can play as a mediator and reminder of forgotten conflicts. “The Angola-South African War left extensive scars and remains a raw place in the lives of many South Africans. Yet the memory and memorialisation of the conflict have become a shrouded spectre. One of the most obscured fallouts of the war was the fact that South Africa managed to construct nuclear weapons and became the first nation to decommission their nuclear arsenal voluntarily,” Wood explained.

The thesis proposes a theoretical foundry and “inverted monument” at the forgotten nuclear weapons development site at Pelindaba near Hartbeesport Dam. He chose this project due to his interest in the relationship between architecture and memory, particularly the memory of warfare. “I wanted to focus my research on something specific to South Africa. I settled on the Angola-South African War because its fallout is still a relevant struggle that many people deal with, yet it remains largely unspoken. This led me to discover how intimately the nuclear weapons programme was connected to the conflict,” Wood stated. 

Awards pave the way to success

Wood mentioned that he had known about the prestigious Corobrik Awards early in his studies but only realised later that one winner is chosen to represent the whole country. “Winning the national award still feels a bit unreal. From prior experience, I have seen how the award's prestige follows the winners long into their careers, standing as a significant achievement. It is a great honour to be considered one of these winners, and I am very grateful for the lasting recognition the award brings to my career.”

He credited the lecturers and staff at the Department of Architecture for their significant role in his success. “They taught me what I know, and it was most inspiring to see their passion for architecture. The support from the lecturers at this incredible department goes far beyond their job descriptions,” he remarked.

Wood also won the Dean’s Medal for the best results in the final-year Master’s class during the April graduation ceremonies of UFS. He is currently working for an architectural firm in Cape Town, named TwoFiveFive Architects

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept