Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 June 2024 | Story Martinette Brits | Photo Supplied
Arran Wood pictured with Prof Jan Smith
Arran Wood pictured with Prof Jan Smith, Senior Lecturer at the Department of Architecture, in front of his project.

A former Master’s student in Architecture at the University of the Free State (UFS) has recently been honoured with the esteemed Corobrik National Student Architecture Award. The 2023 grand prize was awarded to Arran Wood from UFS for his project "Spectral Flesh – Remembrance," which explores South Africa's forgotten nuclear history.

Corobrik’s vision for this competition is to provide up-and-coming architecture students a platform to showcase their architectural talent and creativity. The eight finalists were chosen by major South African universities, each selecting its best Master’s architectural student to participate in the awards.

The eight regional finalists had the opportunity to present their theses to an esteemed panel of judges, including Carin Smuts from CS Studio Architects, Somers Govender from Artek 4 Architects and Rudolf Roos from HDG Pretoria.

Unveiling forgotten conflict: Architecture as a mediator and reminder

Wood’s project delves into the role architecture can play as a mediator and reminder of forgotten conflicts. “The Angola-South African War left extensive scars and remains a raw place in the lives of many South Africans. Yet the memory and memorialisation of the conflict have become a shrouded spectre. One of the most obscured fallouts of the war was the fact that South Africa managed to construct nuclear weapons and became the first nation to decommission their nuclear arsenal voluntarily,” Wood explained.

The thesis proposes a theoretical foundry and “inverted monument” at the forgotten nuclear weapons development site at Pelindaba near Hartbeesport Dam. He chose this project due to his interest in the relationship between architecture and memory, particularly the memory of warfare. “I wanted to focus my research on something specific to South Africa. I settled on the Angola-South African War because its fallout is still a relevant struggle that many people deal with, yet it remains largely unspoken. This led me to discover how intimately the nuclear weapons programme was connected to the conflict,” Wood stated. 

Awards pave the way to success

Wood mentioned that he had known about the prestigious Corobrik Awards early in his studies but only realised later that one winner is chosen to represent the whole country. “Winning the national award still feels a bit unreal. From prior experience, I have seen how the award's prestige follows the winners long into their careers, standing as a significant achievement. It is a great honour to be considered one of these winners, and I am very grateful for the lasting recognition the award brings to my career.”

He credited the lecturers and staff at the Department of Architecture for their significant role in his success. “They taught me what I know, and it was most inspiring to see their passion for architecture. The support from the lecturers at this incredible department goes far beyond their job descriptions,” he remarked.

Wood also won the Dean’s Medal for the best results in the final-year Master’s class during the April graduation ceremonies of UFS. He is currently working for an architectural firm in Cape Town, named TwoFiveFive Architects

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept