Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 June 2024 | Story Martinette Brits | Photo Supplied
Arran Wood pictured with Prof Jan Smith
Arran Wood pictured with Prof Jan Smith, Senior Lecturer at the Department of Architecture, in front of his project.

A former Master’s student in Architecture at the University of the Free State (UFS) has recently been honoured with the esteemed Corobrik National Student Architecture Award. The 2023 grand prize was awarded to Arran Wood from UFS for his project "Spectral Flesh – Remembrance," which explores South Africa's forgotten nuclear history.

Corobrik’s vision for this competition is to provide up-and-coming architecture students a platform to showcase their architectural talent and creativity. The eight finalists were chosen by major South African universities, each selecting its best Master’s architectural student to participate in the awards.

The eight regional finalists had the opportunity to present their theses to an esteemed panel of judges, including Carin Smuts from CS Studio Architects, Somers Govender from Artek 4 Architects and Rudolf Roos from HDG Pretoria.

Unveiling forgotten conflict: Architecture as a mediator and reminder

Wood’s project delves into the role architecture can play as a mediator and reminder of forgotten conflicts. “The Angola-South African War left extensive scars and remains a raw place in the lives of many South Africans. Yet the memory and memorialisation of the conflict have become a shrouded spectre. One of the most obscured fallouts of the war was the fact that South Africa managed to construct nuclear weapons and became the first nation to decommission their nuclear arsenal voluntarily,” Wood explained.

The thesis proposes a theoretical foundry and “inverted monument” at the forgotten nuclear weapons development site at Pelindaba near Hartbeesport Dam. He chose this project due to his interest in the relationship between architecture and memory, particularly the memory of warfare. “I wanted to focus my research on something specific to South Africa. I settled on the Angola-South African War because its fallout is still a relevant struggle that many people deal with, yet it remains largely unspoken. This led me to discover how intimately the nuclear weapons programme was connected to the conflict,” Wood stated. 

Awards pave the way to success

Wood mentioned that he had known about the prestigious Corobrik Awards early in his studies but only realised later that one winner is chosen to represent the whole country. “Winning the national award still feels a bit unreal. From prior experience, I have seen how the award's prestige follows the winners long into their careers, standing as a significant achievement. It is a great honour to be considered one of these winners, and I am very grateful for the lasting recognition the award brings to my career.”

He credited the lecturers and staff at the Department of Architecture for their significant role in his success. “They taught me what I know, and it was most inspiring to see their passion for architecture. The support from the lecturers at this incredible department goes far beyond their job descriptions,” he remarked.

Wood also won the Dean’s Medal for the best results in the final-year Master’s class during the April graduation ceremonies of UFS. He is currently working for an architectural firm in Cape Town, named TwoFiveFive Architects

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept