Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 June 2024 | Story Edzani Nephalela | Photo Supplied
Dr Nomalungelo Ngubane
Dr Nomalungelo Ngubane, the Director of the Academy for Multilingualism, is at the forefront of this initiative, championing diversity and inclusiveness for all stakeholders at the University of the Free State.

Diversity in higher education institutions enriches the learning environment, fostering a culture of inclusion and mutual respect. It broadens perspectives, encourages critical thinking, and prepares students for a global workforce by supporting equitable access to opportunities and enhancing all students' personal growth and academic excellence.

The University of the Free State (UFS) has marked a significant milestone in its commitment to linguistic diversity with the official translation of its Language Policy into three additional languages: Sesotho, Afrikaans, and isiZulu. Previously only available in English, the translation of the policy – approved by the University Council in November 2023 – into these languages reflects the university's dedication to inclusivity and recognition of its diverse community.

The collaboration between the Academy for Multilingualism and the Institutional Regulatory Code was instrumental in a groundbreaking initiative: making the Language Policy accessible to speakers of African languages. Spearheaded by the Academy for Multilingualism, this endeavour involved a thorough translation, formatting, and proofreading process.

Dr Nomalungelo Ngubane, Director of the Academy for Multilingualism, emphasised that the availability of the Language Policy in multiple languages is not merely symbolic, but underscores the UFS' values of respect, human dignity, and social justice, as outlined in its Vision130. “This initiative aligns with the university's overarching goal of fostering an environment where all languages are valued and respected. We also hope that the Language Policy will not just be written in different languages but will strengthen the implementation of the policy in various domains of the university to achieve its objectives.

She further explains that the translation project is expected to have far-reaching impacts on how policies are communicated and understood within the university, because it enhances the ability of students, staff, and stakeholders to participate more fully in university life, contributing to a more cohesive and integrated community.

This initiative is a testament to the UFS' commitment to embracing and celebrating linguistic diversity as a fundamental aspect of its identity and operations.

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept