Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2024 | Story Precious Shamase | Photo Supplied
Prof Richard Ocaya
Prof Richard Ocaya, Associate Professor from the Physics Department.

Prof Richard Ocaya from the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) Qwaqwa  Campus has achieved a significant milestone with a newly patented invention. This patent, developed in collaboration with researchers from Turkey and Saudi Arabia, is the result of work that began in 2017, focusing on a special material known as graphitic carbon nitride.

This breakthrough in temperature measurement technology aligns perfectly with the university's Vision 130 commitment to innovation and addressing global challenges. The new device offers a unique solution to a longstanding issue in the field, providing accurate temperature measurements across an extremely wide range. Existing solutions often require multiple devices, leading to increased costs and reduced accuracy, but this invention simplifies the process.

The device, based on a combination of graphitic carbon nitride and silicon, can measure temperatures from -250°C to 250°C with exceptional consistency and linearity. This range and accuracy set it apart from current technologies, making it suitable for various applications, from standard temperature measurement to specialized settings involving extreme temperatures. It could be especially valuable in deep-space exploration, where equipment faces drastic temperature fluctuations.

The patent underscores the university's commitment to fostering collaborative research, a key aspect of Vision 130. Prof Ocaya attributes the success of the invention to the robust nature of the team, established in 2015. The team is now seeking to commercialize the technology by licensing it to a suitable partner, with organizations like NASA expected to show significant interest.

Prof Ocaya advises other academics considering patenting their inventions to ensure the patent solves a real problem uniquely and is based on sound principles. This makes the invention reproducible and protects it from being copied, assigning exclusive rights to the patent holder. Patenting allows for either manufacturing the devices or licensing them to third parties for royalties and profit. He notes that the main consideration is that the innovation must be practical and solve a specific problem in a novel and commercially viable way. He also acknowledges the challenge many academics face, as the "publish or perish" mentality often leads to choosing scientific articles over patents.

Despite securing the patent, Prof Ocaya and his team continue their research efforts, exploring new possibilities while balancing practical research with academic pursuits. He believes the invention will significantly impact the field of temperature measurement, being integrated into many new designs requiring such measurements.

The university proudly supports this innovative research and anticipates its real-world impact, furthering Vision 130's commitment to increasing UFS's research capacity and capability.

News Archive

Scientists discover a water reservoir beneath the Free State
2009-12-09

Dr Holger Sommer

The Mantle Research Group Bloemfontein (MRGB), under the leadership of Dr Holger Sommer, a senior lecturer in the Department of Geology at the University of the Free State (UFS), has discovered an enormous water reservoir 160 km beneath the Free State.

This discovery, according to Dr Sommer, is the first of its kind in South Africa after he had previously made a similar finding in Colorado, USA.

However, this water cannot be used for human consumption. “It is not frozen water; it is not molecular water; it is not fresh water; it is not salty water; it is OH – water which is sitting in the crystal lattice,” he said.

He said the reservoir was comparable in size to Lake Victoria in Tanzania.
The researchers collected eclogites from the Roberts Victor (Rovic) Mine close to the town of Boshof, south-west of the Free State, for their study.

“The Rovic eclogites are rocks which represent former oceanic crust transported into the earth’s interior by complex plate tectonic processes about 2.0 billion years ago,” explained Dr Sommer.

“These rocks were finally carried back to the earth’s surface by volcanic (kimberlite) eruptions around 130 million years ago. Eclogitic rocks are therefore a window into the Earth’s interior.”

The question from the beginning for all MRGB scientists was: Is there water inside these rocks in such depth, and if so, where is it located?

To answer this question, Dr Sommer and his research fellows separated single mineral grains from eclogite samples and prepared about 100 micrometer (0,1 mm) thick rock sections. Afterwards, specific particle accelerator (Synchrotron) measurements were carried out in the city of Karlsruhe in Germany.

“And indeed, the MRGB found water inside the studied rocks from the Roberts Victor Mine,” he said. “The water was located in defect structures in crystal lattices and along boundaries between single mineral grains.”

“The occurrence of water at such depth would give first evidence that all water of the oceans could be stored five to ten times in the earth’s mantle.”
The study was conducted about a year ago.
 

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt.stg@ufs.ac.za
4 December 2009

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept