Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2024 | Story Precious Shamase | Photo Supplied
Prof Richard Ocaya
Prof Richard Ocaya, Associate Professor from the Physics Department.

Prof Richard Ocaya from the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) Qwaqwa  Campus has achieved a significant milestone with a newly patented invention. This patent, developed in collaboration with researchers from Turkey and Saudi Arabia, is the result of work that began in 2017, focusing on a special material known as graphitic carbon nitride.

This breakthrough in temperature measurement technology aligns perfectly with the university's Vision 130 commitment to innovation and addressing global challenges. The new device offers a unique solution to a longstanding issue in the field, providing accurate temperature measurements across an extremely wide range. Existing solutions often require multiple devices, leading to increased costs and reduced accuracy, but this invention simplifies the process.

The device, based on a combination of graphitic carbon nitride and silicon, can measure temperatures from -250°C to 250°C with exceptional consistency and linearity. This range and accuracy set it apart from current technologies, making it suitable for various applications, from standard temperature measurement to specialized settings involving extreme temperatures. It could be especially valuable in deep-space exploration, where equipment faces drastic temperature fluctuations.

The patent underscores the university's commitment to fostering collaborative research, a key aspect of Vision 130. Prof Ocaya attributes the success of the invention to the robust nature of the team, established in 2015. The team is now seeking to commercialize the technology by licensing it to a suitable partner, with organizations like NASA expected to show significant interest.

Prof Ocaya advises other academics considering patenting their inventions to ensure the patent solves a real problem uniquely and is based on sound principles. This makes the invention reproducible and protects it from being copied, assigning exclusive rights to the patent holder. Patenting allows for either manufacturing the devices or licensing them to third parties for royalties and profit. He notes that the main consideration is that the innovation must be practical and solve a specific problem in a novel and commercially viable way. He also acknowledges the challenge many academics face, as the "publish or perish" mentality often leads to choosing scientific articles over patents.

Despite securing the patent, Prof Ocaya and his team continue their research efforts, exploring new possibilities while balancing practical research with academic pursuits. He believes the invention will significantly impact the field of temperature measurement, being integrated into many new designs requiring such measurements.

The university proudly supports this innovative research and anticipates its real-world impact, furthering Vision 130's commitment to increasing UFS's research capacity and capability.

News Archive

New digital planetarium first of its kind for Sub-Saharan Africa
2013-10-10

Mr Andrew Johnson, Sky-Skan engineer, explains how the dataprojector of the new digital planetarium functions.
10 October 2013

The University of the Free State (UFS) is the first in the world to boast a modern digital planetarium which was erected within an existing observatory.

It is also the first planetarium of its kind for Sub-Saharan Africa.

“What makes the project unique is the fact that we convert the existing observatory structure into a modern digital planetarium. It hasn’t been done anywhere else,” says Andrew Johnson, engineer at Sky-Skan, the company supplying the equipment and also installing it.

Andrew has worked on similar projects, with his company installing digital planetariums around the world.

What makes the planetarium so special is the fact that it offers visitors an inclusive experience.

“Previously visitors could only watch projected stars and constellations, but with the digital planetarium they can now experience a journey through space which feels very close to reality.”

Andrew points out that, apart from stargazing and travelling through space, the digital planetarium allows the audience to visit planets, explore the secrets of the oceans or even organs in the human body.

The planetarium will also be used for concerts, state-of-the-art presentations, theatre productions, as well as meetings, conferences and exhibitions.

The auditorium can seat approximately 90 adults or 120 children.

The digital dome that was recently fitted into the existing observatory structure, is a 12-metre seamless aluminium screen complemented by a powerful surround-sound system and multiple data projectors from Sky-Skan. This results in an immersive experience of the digital universe, as well as the recreation of the macro and micro cosmos an a variety of other environments.

The planetarium will be officially opened on Friday 1 November 2013 by Derek Hanekom, Minister of Science and Technology. Prof Matie Hoffman from the Department of Physics at the UFS is delighted at this visit from Minister Hanekom.

“This recognition and national interest demonstrates the importance and contribution of the first digital planetarium in Sub-Saharan Africa to science and astronomy.  It is also evidence that a facility like this is important for the training of the next generation of scientists.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept