Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2024 | Story Precious Shamase | Photo Supplied
Prof Richard Ocaya
Prof Richard Ocaya, Associate Professor from the Physics Department.

Prof Richard Ocaya from the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) Qwaqwa  Campus has achieved a significant milestone with a newly patented invention. This patent, developed in collaboration with researchers from Turkey and Saudi Arabia, is the result of work that began in 2017, focusing on a special material known as graphitic carbon nitride.

This breakthrough in temperature measurement technology aligns perfectly with the university's Vision 130 commitment to innovation and addressing global challenges. The new device offers a unique solution to a longstanding issue in the field, providing accurate temperature measurements across an extremely wide range. Existing solutions often require multiple devices, leading to increased costs and reduced accuracy, but this invention simplifies the process.

The device, based on a combination of graphitic carbon nitride and silicon, can measure temperatures from -250°C to 250°C with exceptional consistency and linearity. This range and accuracy set it apart from current technologies, making it suitable for various applications, from standard temperature measurement to specialized settings involving extreme temperatures. It could be especially valuable in deep-space exploration, where equipment faces drastic temperature fluctuations.

The patent underscores the university's commitment to fostering collaborative research, a key aspect of Vision 130. Prof Ocaya attributes the success of the invention to the robust nature of the team, established in 2015. The team is now seeking to commercialize the technology by licensing it to a suitable partner, with organizations like NASA expected to show significant interest.

Prof Ocaya advises other academics considering patenting their inventions to ensure the patent solves a real problem uniquely and is based on sound principles. This makes the invention reproducible and protects it from being copied, assigning exclusive rights to the patent holder. Patenting allows for either manufacturing the devices or licensing them to third parties for royalties and profit. He notes that the main consideration is that the innovation must be practical and solve a specific problem in a novel and commercially viable way. He also acknowledges the challenge many academics face, as the "publish or perish" mentality often leads to choosing scientific articles over patents.

Despite securing the patent, Prof Ocaya and his team continue their research efforts, exploring new possibilities while balancing practical research with academic pursuits. He believes the invention will significantly impact the field of temperature measurement, being integrated into many new designs requiring such measurements.

The university proudly supports this innovative research and anticipates its real-world impact, furthering Vision 130's commitment to increasing UFS's research capacity and capability.

News Archive

Two scientists part of team that discovers the source of the highest energy cosmic rays at the centre of the Milky Way
2016-03-22

Description: Giant molecular clouds  Tags: Giant molecular clouds

Artist's impression of the giant molecular clouds surrounding the Galactic Centre, bombarded by very high energy protons accelerated in the vicinity of the central black hole and subsequently shining in gamma rays.
Artist's impression: © Dr Mark A. Garlick/ H.E.S.S. Collaboration

Spotlight photo:
Dr Brian van Soelen and Prof Pieter Meintjes of the UFS Department of Physics.
Photo: Charl Devenish

H.E.S.S. (High Energy Stereoscopic System) scientists publically revealed their latest galactic discovery in the international science journal, Nature, on 16 March 2016. These scientists were able to pinpoint the most powerful source of cosmic radiation – which, up to now, remained a mystery.

Part of this team of scientists are Prof Pieter Meintjes and Dr Brian van Soelen, both in the University of the Free State (UFS) Department of Physics. Dr Van Soelen explains that they have discovered a proton PeVatron – a source that can accelerate protons up to energies of ~1 PeV (10^15 eV) – at the centre of the Milky Way. The supermassive black hole called Sagittarius A has been identified as the most plausible source of this unprecedented acceleration of protons.

The protons are accelerated to Very High Energy (VHE) gamma rays. The energy of these protons are 100 times larger than those achieved by the Large Hadron Collider at CERN (the European Organization for Nuclear Research).

According to Dr Van Soelen, the fact that this research has been published in Nature demonstrates the importance and pioneering nature of the research conducted by H.E.S.S. The H.E.S.S. observatory – operational in Namibia – is a collaboration between 42 scientific institutions in 12 countries.

In 2006, H.E.S.S. was awarded the Descartes Prize of the European Commission – the highest recognition for collaborative research – and in 2010 the prestigious Rossi Prize of the American Astronomical Society. The extent of the observatory’s significance places it among the ranks of the Hubble Space Telescope and the telescopes of the European Southern Observatory in Chile.

“The next generation VHE gamma-ray telescope,” Dr Van Soelen says, “will be the Cherenkov Telescope Array (CTA), which is currently in the design and development stage.” Both Dr Van Soelen and Prof Meintjes are part of this project as well.

H.E.S.S. has issued a complete statement about the paper published in Nature.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept