Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2024 | Story Precious Shamase | Photo Supplied
Prof Richard Ocaya
Prof Richard Ocaya, Associate Professor from the Physics Department.

Prof Richard Ocaya from the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) Qwaqwa  Campus has achieved a significant milestone with a newly patented invention. This patent, developed in collaboration with researchers from Turkey and Saudi Arabia, is the result of work that began in 2017, focusing on a special material known as graphitic carbon nitride.

This breakthrough in temperature measurement technology aligns perfectly with the university's Vision 130 commitment to innovation and addressing global challenges. The new device offers a unique solution to a longstanding issue in the field, providing accurate temperature measurements across an extremely wide range. Existing solutions often require multiple devices, leading to increased costs and reduced accuracy, but this invention simplifies the process.

The device, based on a combination of graphitic carbon nitride and silicon, can measure temperatures from -250°C to 250°C with exceptional consistency and linearity. This range and accuracy set it apart from current technologies, making it suitable for various applications, from standard temperature measurement to specialized settings involving extreme temperatures. It could be especially valuable in deep-space exploration, where equipment faces drastic temperature fluctuations.

The patent underscores the university's commitment to fostering collaborative research, a key aspect of Vision 130. Prof Ocaya attributes the success of the invention to the robust nature of the team, established in 2015. The team is now seeking to commercialize the technology by licensing it to a suitable partner, with organizations like NASA expected to show significant interest.

Prof Ocaya advises other academics considering patenting their inventions to ensure the patent solves a real problem uniquely and is based on sound principles. This makes the invention reproducible and protects it from being copied, assigning exclusive rights to the patent holder. Patenting allows for either manufacturing the devices or licensing them to third parties for royalties and profit. He notes that the main consideration is that the innovation must be practical and solve a specific problem in a novel and commercially viable way. He also acknowledges the challenge many academics face, as the "publish or perish" mentality often leads to choosing scientific articles over patents.

Despite securing the patent, Prof Ocaya and his team continue their research efforts, exploring new possibilities while balancing practical research with academic pursuits. He believes the invention will significantly impact the field of temperature measurement, being integrated into many new designs requiring such measurements.

The university proudly supports this innovative research and anticipates its real-world impact, furthering Vision 130's commitment to increasing UFS's research capacity and capability.

News Archive

Chemistry postgraduates tackle crystallography with eminent international researcher
2017-04-04

Description: Dr Alice Brink  Tags: Dr Alice Brink

Department of Chemistry senior lecturer, Dr Alice Brink(left),
hosted outstanding researcher, Prof Elspeth Garman (right)
from the University of Oxford in England to present a
crystallography lecture.
Photo: Rulanzen Martin



“Crystallography forms part of everyday life.” This is according to Prof Elspeth Garman, eminent researcher from the Department of Biochemistry, University of Oxford in England, who was hosted by Dr Alice Brink, Department of Chemistry at the University of the Free State (UFS) Bloemfontein Campus. Prof Garman presented a lecture in the Department of Chemistry, titled ‘104 years of crystallography: What has it taught us and where will it lead’. She also taught the postgraduate students how to refine and mount protein structures in cold cryo conditions at about -173°C.

What is Crystallography?
Crystallography is the scientific technique which allows for the position of atoms to be determined in any matter which is crystalline.
 
“You cannot complete Protein Crystallography without the five key steps, namely obtaining a pure protein, growing the crystal, collecting the data, and finally determining the structure and atomic coordinates,” said Prof Garman. Apart from teaching, she was also here to mentor and have discussions with UFS Prestige Scholars on how to face academic challenges in the professional environment.

Discovery of the first crystal structure of a TB protein

Prof Garman successfully determined the first crystal structure of a Tuberculosis protein (TBNAT), a project that took about 15 years of research. In partnership with the Department of Pharmacology at Oxford University and an outstanding PhD student, Areej Abuhammad, they managed to grow only one TBNAT crystal, one-fiftieth of a millimetre. They also managed to solve the structure and publish it.

Dr Alice Brink, Senior Lecturer in the Department of Chemistry, says, “It’s an incredible privilege to have Prof Garman here and to have her share her wisdom and knowledge so freely with the young academics.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept