Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 June 2024 | Story André Damons | Photo Suplied
Dr Claudia Ntsapi
Dr Matlakala C Ntsapi is a Senior Lecturer and researcher in the Department of Basic Medical Sciences at the UFS.

A researcher from the University of the Free State (UFS) is investigating the potential benefits of medicinal plants as supplementary treatments for neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s diseases.

The work of Dr Matlakala Claudia Ntsapi, Senior Lecturer in the Department of Basic Medical Sciences at the UFS, focuses on preserving human brain health to delay or prevent age-related conditions.

According to her, while the primary focus is on age-related neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s, the bioactive compounds in these medicinal plants may also have therapeutic potential for other neurological disorders, various types of cancers and Type 2 Diabetes. The broad protective effects of these plant-based bioactive compounds could make them relevant in the potential treatment of other diseases involving oxidative stress and inflammation.

She is involved in several multidisciplinary projects, collaborating with research experts from Denmark, the UK, and various national institutions such as the Central University of Technology (CUT), North West University (NWU), and the Stellenbosch University (SUN), as well as colleagues from the UFS. 

The potential of medicinal plants

“In collaboration with experts from our institution, the CUT and SU, who have strong backgrounds in pharmacology and ethnobotany, we are focusing on underexplored medicinal plants and nutraceuticals. These plants contain bioactive compounds with potential neuroprotective properties, which are believed to provide extra health benefits beyond basic nutritional value,” says Dr Ntsapi.

“We hope that these medicinal plants have the potential to preserve cognitive function and slow the progression of neurodegenerative diseases like Alzheimer’s. Specifically, we aim to identify novel therapeutic targets and discover new avenues for intervention that can improve the quality of life for individuals affected by age-related brain conditions,” she says.

Identifying therapeutic targets and discovering new interventions

The bioactive compounds found in selective medicinal plants and nutraceuticals, explains Dr Ntsapi, serve as a promising source of ‘natural’ therapeutics that may be safer and have fewer side effects compared to conventional synthetic drugs. Additionally, the untapped potential of these compounds for neuroprotection and the preservation of brain health could provide innovative therapeutic solutions. These compounds may be used as complementary therapies to existing drugs, which often have limited efficacy on their own, thereby enhancing overall treatment outcomes for neurodegenerative diseases.

“By utilising cutting-edge techniques, such the innovative CelVivo ClinoStar 2 System, we strive to gain insights into the safety and efficacy of underexplored medicinal plants in preserving cognitive function and slowing disease progression.

“By exploring the untapped potential of bioactive compounds found in medicinal plants and nutraceuticals, our research group aims to contribute to the identification of novel therapeutic targets and the discovery of new avenues for intervention to improve the quality of life for individuals affected by age-related brain conditions,” says Dr Ntsapi.

The researchers, in collaboration with others in the UFS School of Clinical Medicine, will develop 3D cell-based models of the human cortex and hippocampus by utilising the CelVivo ClinoStar 2 System. This cutting-edge technology, housed in an easy-to-use CO² incubator, mimics ‘animal model-like’ conditions with low sheer stress, allowing scientists to generate cell-based models that closely resemble real-world conditions.

Dr Ntsapi explains that they will specifically focus on the technologies’ applications in studying age-related neurodegenerative disorders, such as Alzheimer’s disease. The potential impact of this research is immense, as it could contribute to the development of novel therapeutic strategies for combating the debilitating progression of neurodegenerative diseases, and ultimately improving the quality of life for affected individuals.

Hope for the research

“Our hope for this research is to significantly advance our understanding of neurodegenerative disease progression and to develop novel therapeutic strategies that can effectively combat these debilitating conditions. Ultimately, we aim to improve the quality of life for individuals affected by neurodegenerative diseases by preserving cognitive function and slowing disease progression.

“This research will contribute to the knowledge pool in this field, with the potential to lead to groundbreaking discoveries in the treatment of Alzheimer’s disease and other related disorders, potentially contributing to the policy guidelines on how these conditions are managed and treated,” she says.

The international partners from Denmark and the UK have made their expertise and facilities available to postgraduate students from the UFS, some of whom they are co-supervising.

Dr Ntsapi, who is passionate about exploring innovative solutions to address the gradual decline in normal brain function associated with aging, was this year one the university’s nominations for the prestigious 2023/2024 NSTF-South32 Awards, popularly known as the “Science Oscars” of South Africa. 

News Archive

#Women'sMonth: Long hours in wind and cold weather help to reconstruct Marion Island’s glacial history
2017-08-10

 Description: Liezel Rudolph  Tags: Liezel Rudolph, Process Geomorphology, Marion Island, periglacial geomorphology, Department of Geography  

Liezel Rudolph, lecturer for second-year students in Process
Geomorphology at the University of the Free State (UFS).
Photo: RA Dwight

Liezel Rudolph, a lecturer for second-year students in Process Geomorphology, aims to reconstruct the glacial history of Marion Island through cosmogenic nuclide dating techniques. She is interested in periglacial geomorphology, a study of how the earth’s surface could be formed by ice actions (freezing and thawing of ice).

Liezel is a lecturer in the Department of Geography at the university and is researching landscape development specifically in cold environments such as Antarctica, the Sub-Antarctic islands, and high mountain areas. “My involvement with periglacial geomorphology is largely due to academic giants who have carved a pathway for South Africans,” says Liezel.

Liezel visited Marion Island for the first time during her honours year in 2011, when she investigated the impact of seals on soil conditions and vegetation. Three years later, she visited Antarctica to study rock glaciers.

The challenge of the job
A workday in Antarctica is challenging. “Our time in the field is very limited, so you have to work every possible hour when the weather is not life-threatening: from collecting soil samples, to measuring soil temperature and downloading data, we measure polygons and test the hardness of rocks. The only way to get the amount of work done, is to work long hours in wind and rain with a positive and competent team! We take turns with chores: the person carrying the notebook is usually the coldest, while the rest of us are stretching acrobatically over rocks to get every nook and cranny measured and documented.”

A typical workday
Liezel describes a typical workday: “Your day starts with a stiff breakfast (bacon and eggs and a bowl of oats) and great coffee! After that comes the twenty-minute dressing session: first a tight-fitting under-layer, a middle layer – sweater and T-shirt, and then the outer windbreaker (or a quilt jacket on an extra cold day). Then you start applying sunscreen to every bit of open face area. Beanie on, sunglasses, two pairs of socks, two pairs of gloves. The few kilograms of equipment, one vacuum flask containing an energy drink, one vacuum flask containing drinking water (it would freeze in a regular bottle), and a chocolate bar and piece of biltong for lunch. After this, we drive (on snowmobiles) or fly (in helicopter) to our study area for about eight hours of digging, measuring, downloading, testing and chopping. Back at the base and after a long and tiresome undressing session, we move to the lab with all our data to make sure that it is downloaded safely and captured onto a database. Afterwards, depending on the day of the week, we enjoy a good meal. If you are lucky, such a typical day will coincide with your shower day. We can only shower every second day due to the energy-intensive water production (we have to melt snow) and the sewage system (all the water has to be purified before it could be returned to the environment). Then you grab your eye shield (since the sun is not sinking during summer) and take a nap before the sun continues to shine into the next day.”

Theoretical knowledge broadened 
“Going into the field (whether island or mountains) provides me with an opportunity to test geomorphic theories. Without experience in the field, my knowledge will only be limited to book knowledge. With practical experience, I hope to broaden my knowledge so that I could train my students from experience rather than from a textbook,” says Liezel.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept