Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 June 2024 | Story André Damons | Photo Suplied
Dr Claudia Ntsapi
Dr Matlakala C Ntsapi is a Senior Lecturer and researcher in the Department of Basic Medical Sciences at the UFS.

A researcher from the University of the Free State (UFS) is investigating the potential benefits of medicinal plants as supplementary treatments for neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s diseases.

The work of Dr Matlakala Claudia Ntsapi, Senior Lecturer in the Department of Basic Medical Sciences at the UFS, focuses on preserving human brain health to delay or prevent age-related conditions.

According to her, while the primary focus is on age-related neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s, the bioactive compounds in these medicinal plants may also have therapeutic potential for other neurological disorders, various types of cancers and Type 2 Diabetes. The broad protective effects of these plant-based bioactive compounds could make them relevant in the potential treatment of other diseases involving oxidative stress and inflammation.

She is involved in several multidisciplinary projects, collaborating with research experts from Denmark, the UK, and various national institutions such as the Central University of Technology (CUT), North West University (NWU), and the Stellenbosch University (SUN), as well as colleagues from the UFS. 

The potential of medicinal plants

“In collaboration with experts from our institution, the CUT and SU, who have strong backgrounds in pharmacology and ethnobotany, we are focusing on underexplored medicinal plants and nutraceuticals. These plants contain bioactive compounds with potential neuroprotective properties, which are believed to provide extra health benefits beyond basic nutritional value,” says Dr Ntsapi.

“We hope that these medicinal plants have the potential to preserve cognitive function and slow the progression of neurodegenerative diseases like Alzheimer’s. Specifically, we aim to identify novel therapeutic targets and discover new avenues for intervention that can improve the quality of life for individuals affected by age-related brain conditions,” she says.

Identifying therapeutic targets and discovering new interventions

The bioactive compounds found in selective medicinal plants and nutraceuticals, explains Dr Ntsapi, serve as a promising source of ‘natural’ therapeutics that may be safer and have fewer side effects compared to conventional synthetic drugs. Additionally, the untapped potential of these compounds for neuroprotection and the preservation of brain health could provide innovative therapeutic solutions. These compounds may be used as complementary therapies to existing drugs, which often have limited efficacy on their own, thereby enhancing overall treatment outcomes for neurodegenerative diseases.

“By utilising cutting-edge techniques, such the innovative CelVivo ClinoStar 2 System, we strive to gain insights into the safety and efficacy of underexplored medicinal plants in preserving cognitive function and slowing disease progression.

“By exploring the untapped potential of bioactive compounds found in medicinal plants and nutraceuticals, our research group aims to contribute to the identification of novel therapeutic targets and the discovery of new avenues for intervention to improve the quality of life for individuals affected by age-related brain conditions,” says Dr Ntsapi.

The researchers, in collaboration with others in the UFS School of Clinical Medicine, will develop 3D cell-based models of the human cortex and hippocampus by utilising the CelVivo ClinoStar 2 System. This cutting-edge technology, housed in an easy-to-use CO² incubator, mimics ‘animal model-like’ conditions with low sheer stress, allowing scientists to generate cell-based models that closely resemble real-world conditions.

Dr Ntsapi explains that they will specifically focus on the technologies’ applications in studying age-related neurodegenerative disorders, such as Alzheimer’s disease. The potential impact of this research is immense, as it could contribute to the development of novel therapeutic strategies for combating the debilitating progression of neurodegenerative diseases, and ultimately improving the quality of life for affected individuals.

Hope for the research

“Our hope for this research is to significantly advance our understanding of neurodegenerative disease progression and to develop novel therapeutic strategies that can effectively combat these debilitating conditions. Ultimately, we aim to improve the quality of life for individuals affected by neurodegenerative diseases by preserving cognitive function and slowing disease progression.

“This research will contribute to the knowledge pool in this field, with the potential to lead to groundbreaking discoveries in the treatment of Alzheimer’s disease and other related disorders, potentially contributing to the policy guidelines on how these conditions are managed and treated,” she says.

The international partners from Denmark and the UK have made their expertise and facilities available to postgraduate students from the UFS, some of whom they are co-supervising.

Dr Ntsapi, who is passionate about exploring innovative solutions to address the gradual decline in normal brain function associated with aging, was this year one the university’s nominations for the prestigious 2023/2024 NSTF-South32 Awards, popularly known as the “Science Oscars” of South Africa. 

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept