Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 June 2024 | Story André Damons | Photo Suplied
Dr Claudia Ntsapi
Dr Matlakala C Ntsapi is a Senior Lecturer and researcher in the Department of Basic Medical Sciences at the UFS.

A researcher from the University of the Free State (UFS) is investigating the potential benefits of medicinal plants as supplementary treatments for neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s diseases.

The work of Dr Matlakala Claudia Ntsapi, Senior Lecturer in the Department of Basic Medical Sciences at the UFS, focuses on preserving human brain health to delay or prevent age-related conditions.

According to her, while the primary focus is on age-related neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s, the bioactive compounds in these medicinal plants may also have therapeutic potential for other neurological disorders, various types of cancers and Type 2 Diabetes. The broad protective effects of these plant-based bioactive compounds could make them relevant in the potential treatment of other diseases involving oxidative stress and inflammation.

She is involved in several multidisciplinary projects, collaborating with research experts from Denmark, the UK, and various national institutions such as the Central University of Technology (CUT), North West University (NWU), and the Stellenbosch University (SUN), as well as colleagues from the UFS. 

The potential of medicinal plants

“In collaboration with experts from our institution, the CUT and SU, who have strong backgrounds in pharmacology and ethnobotany, we are focusing on underexplored medicinal plants and nutraceuticals. These plants contain bioactive compounds with potential neuroprotective properties, which are believed to provide extra health benefits beyond basic nutritional value,” says Dr Ntsapi.

“We hope that these medicinal plants have the potential to preserve cognitive function and slow the progression of neurodegenerative diseases like Alzheimer’s. Specifically, we aim to identify novel therapeutic targets and discover new avenues for intervention that can improve the quality of life for individuals affected by age-related brain conditions,” she says.

Identifying therapeutic targets and discovering new interventions

The bioactive compounds found in selective medicinal plants and nutraceuticals, explains Dr Ntsapi, serve as a promising source of ‘natural’ therapeutics that may be safer and have fewer side effects compared to conventional synthetic drugs. Additionally, the untapped potential of these compounds for neuroprotection and the preservation of brain health could provide innovative therapeutic solutions. These compounds may be used as complementary therapies to existing drugs, which often have limited efficacy on their own, thereby enhancing overall treatment outcomes for neurodegenerative diseases.

“By utilising cutting-edge techniques, such the innovative CelVivo ClinoStar 2 System, we strive to gain insights into the safety and efficacy of underexplored medicinal plants in preserving cognitive function and slowing disease progression.

“By exploring the untapped potential of bioactive compounds found in medicinal plants and nutraceuticals, our research group aims to contribute to the identification of novel therapeutic targets and the discovery of new avenues for intervention to improve the quality of life for individuals affected by age-related brain conditions,” says Dr Ntsapi.

The researchers, in collaboration with others in the UFS School of Clinical Medicine, will develop 3D cell-based models of the human cortex and hippocampus by utilising the CelVivo ClinoStar 2 System. This cutting-edge technology, housed in an easy-to-use CO² incubator, mimics ‘animal model-like’ conditions with low sheer stress, allowing scientists to generate cell-based models that closely resemble real-world conditions.

Dr Ntsapi explains that they will specifically focus on the technologies’ applications in studying age-related neurodegenerative disorders, such as Alzheimer’s disease. The potential impact of this research is immense, as it could contribute to the development of novel therapeutic strategies for combating the debilitating progression of neurodegenerative diseases, and ultimately improving the quality of life for affected individuals.

Hope for the research

“Our hope for this research is to significantly advance our understanding of neurodegenerative disease progression and to develop novel therapeutic strategies that can effectively combat these debilitating conditions. Ultimately, we aim to improve the quality of life for individuals affected by neurodegenerative diseases by preserving cognitive function and slowing disease progression.

“This research will contribute to the knowledge pool in this field, with the potential to lead to groundbreaking discoveries in the treatment of Alzheimer’s disease and other related disorders, potentially contributing to the policy guidelines on how these conditions are managed and treated,” she says.

The international partners from Denmark and the UK have made their expertise and facilities available to postgraduate students from the UFS, some of whom they are co-supervising.

Dr Ntsapi, who is passionate about exploring innovative solutions to address the gradual decline in normal brain function associated with aging, was this year one the university’s nominations for the prestigious 2023/2024 NSTF-South32 Awards, popularly known as the “Science Oscars” of South Africa. 

News Archive

Renowned forensic scientist speaks at the UFS
2014-04-02


Forensic science is about the truth. At the presentation delivered by Dr David Klatzow, were, from the left: Tinus Viljoen, lecturer in Forensic Genetics, Dr Klatzow and Laura Heathfield, also a lecturer in Forensic Genetics.
Photo: Leonie Bolleurs 

It is necessary for more research to be done in the field of forensic science in South Africa. This is according to Dr David Klatzow, well-known forensic scientist, during a lecture delivered at the University of the Free State (UFS) last week.

The university is offering, for the first time this year, a BSc degree in Forensic Science in the Department of Genetics. This three-year degree is, among others, directed at people working for the South African Police Service on crime scenes and on criminal cases in forensic laboratories. Students can also study up to PhD level, specialising in various forensic fields.

There is no accredited forensic laboratory in South Africa. “It is time to look differently at forensic science, and to deliver research papers on the subject. In light of the manner in which science is applied, we have to look differently at everything,” Dr Klatzow said.

Dr Klatzow praised the university for its chemistry-based course. “Chemistry is a strong basis for forensic science,” he said.

A paradigm shift in terms of forensic science is needed. Micro scratches on bullets, fingerprints, DNA, bite marks – all of these are forensic evidence that in the past led to people being wrongfully hanged. This evidence is not necessarily the alpha and omega of forensic science today. DNA, which seems to be the golden rule, can produce problems in itself. Because a person leaves DNA in his fingerprint, it is possible that DNA is transferred from one crime scene to another by forensic experts dusting for fingerprints. According to Dr Klatzow, this is only one of the problems that could be experienced with DNA evidence.

“No single set of forensic evidence is 100% effective or without problems. Rather approach the crime scene through a combination of evidence, by collecting fingerprints, DNA, etc. It is also very important to look at the context in which the events happened.

“A person sees what he expects to see. This causes huge problems in terms of forensic science. For example, if a criminal fits the profile of the perpetrator, it doesn’t follow that this specific criminal is the culprit. It isn’t what we don’t know that gives us trouble, it’s what we know that isn’t so,” Dr Klatzow said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept