Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 June 2024 | Story André Damons | Photo Suplied
Dr Claudia Ntsapi
Dr Matlakala C Ntsapi is a Senior Lecturer and researcher in the Department of Basic Medical Sciences at the UFS.

A researcher from the University of the Free State (UFS) is investigating the potential benefits of medicinal plants as supplementary treatments for neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s diseases.

The work of Dr Matlakala Claudia Ntsapi, Senior Lecturer in the Department of Basic Medical Sciences at the UFS, focuses on preserving human brain health to delay or prevent age-related conditions.

According to her, while the primary focus is on age-related neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s, the bioactive compounds in these medicinal plants may also have therapeutic potential for other neurological disorders, various types of cancers and Type 2 Diabetes. The broad protective effects of these plant-based bioactive compounds could make them relevant in the potential treatment of other diseases involving oxidative stress and inflammation.

She is involved in several multidisciplinary projects, collaborating with research experts from Denmark, the UK, and various national institutions such as the Central University of Technology (CUT), North West University (NWU), and the Stellenbosch University (SUN), as well as colleagues from the UFS. 

The potential of medicinal plants

“In collaboration with experts from our institution, the CUT and SU, who have strong backgrounds in pharmacology and ethnobotany, we are focusing on underexplored medicinal plants and nutraceuticals. These plants contain bioactive compounds with potential neuroprotective properties, which are believed to provide extra health benefits beyond basic nutritional value,” says Dr Ntsapi.

“We hope that these medicinal plants have the potential to preserve cognitive function and slow the progression of neurodegenerative diseases like Alzheimer’s. Specifically, we aim to identify novel therapeutic targets and discover new avenues for intervention that can improve the quality of life for individuals affected by age-related brain conditions,” she says.

Identifying therapeutic targets and discovering new interventions

The bioactive compounds found in selective medicinal plants and nutraceuticals, explains Dr Ntsapi, serve as a promising source of ‘natural’ therapeutics that may be safer and have fewer side effects compared to conventional synthetic drugs. Additionally, the untapped potential of these compounds for neuroprotection and the preservation of brain health could provide innovative therapeutic solutions. These compounds may be used as complementary therapies to existing drugs, which often have limited efficacy on their own, thereby enhancing overall treatment outcomes for neurodegenerative diseases.

“By utilising cutting-edge techniques, such the innovative CelVivo ClinoStar 2 System, we strive to gain insights into the safety and efficacy of underexplored medicinal plants in preserving cognitive function and slowing disease progression.

“By exploring the untapped potential of bioactive compounds found in medicinal plants and nutraceuticals, our research group aims to contribute to the identification of novel therapeutic targets and the discovery of new avenues for intervention to improve the quality of life for individuals affected by age-related brain conditions,” says Dr Ntsapi.

The researchers, in collaboration with others in the UFS School of Clinical Medicine, will develop 3D cell-based models of the human cortex and hippocampus by utilising the CelVivo ClinoStar 2 System. This cutting-edge technology, housed in an easy-to-use CO² incubator, mimics ‘animal model-like’ conditions with low sheer stress, allowing scientists to generate cell-based models that closely resemble real-world conditions.

Dr Ntsapi explains that they will specifically focus on the technologies’ applications in studying age-related neurodegenerative disorders, such as Alzheimer’s disease. The potential impact of this research is immense, as it could contribute to the development of novel therapeutic strategies for combating the debilitating progression of neurodegenerative diseases, and ultimately improving the quality of life for affected individuals.

Hope for the research

“Our hope for this research is to significantly advance our understanding of neurodegenerative disease progression and to develop novel therapeutic strategies that can effectively combat these debilitating conditions. Ultimately, we aim to improve the quality of life for individuals affected by neurodegenerative diseases by preserving cognitive function and slowing disease progression.

“This research will contribute to the knowledge pool in this field, with the potential to lead to groundbreaking discoveries in the treatment of Alzheimer’s disease and other related disorders, potentially contributing to the policy guidelines on how these conditions are managed and treated,” she says.

The international partners from Denmark and the UK have made their expertise and facilities available to postgraduate students from the UFS, some of whom they are co-supervising.

Dr Ntsapi, who is passionate about exploring innovative solutions to address the gradual decline in normal brain function associated with aging, was this year one the university’s nominations for the prestigious 2023/2024 NSTF-South32 Awards, popularly known as the “Science Oscars” of South Africa. 

News Archive

Researchers international leaders in satellite tracking in the wildlife environment
2015-05-29

 

Ground-breaking research has attracted international media attention to Francois Deacon, lecturer and researcher in the Department Animal, Wildlife and Grassland Sciences at the UFS, and Prof Nico Smit, from the same department. They are the first researchers in the world to equip giraffes with GPS collars, and to conduct research on this initiative. Recently, they have been joined by Hennie Butler from the Department of Zoology as well as Free State Nature Conservation to further this research.

“Satellite tracking is proving to be extremely valuable in the wildlife environment. The unit is based on a mobile global two-way communication platform, utilising two-way data satellite communication, complete with GPS systems.

“It allows us to track animals day and night, while we monitor their movements remotely from the computer. These systems make possible the efficient control and monitoring of wildlife in all weather conditions and in near-to-real time. We can even communicate with the animals, calling up their positions or changing the tracking schedules.

“The satellite collar allows us to use the extremely accurate data to conduct research with the best technology available. The volume of data received allows us to publish the data in scientific journals and research-related articles.  

“Scientific institutions and the public sector have both shown great interest in satellite tracking, which opens up new ground for scientific research for this university. Data management can be done, using Africa Wildlife Tracking (AWT) equipment where we can access our data personally, store it, and make visual presentations. The AWT system and software architecture provide the researcher with asset tracking, GPS location reports, geo-fencing, highly-detailed custom mapping, history reports and playback, polling on demand, history plotting on maps, and a range of reporting types and functions,” Francois said.

Data can be analysed to determine home range, dispersal, or habitat preference for any specific species.

Francois has been involved in multiple research projects over the last 12 years on wildlife species and domesticated animals, including the collaring of species such as Black-backed Jackal, Caracal, African Wild Dog, Hyena, Lion, Cheetah, Cattle, Kudu, Giraffe, and Black Rhino: “Giraffe definitely being the most challenging of all,” he said.

In 2010, he started working on his PhD, entitled The spatial ecology, habitat preferences and diet selection of giraffe (Giraffa camelopardalis giraffa) in the Kalahari region of South Africa.

 

Since then, his work has resulted not only in more research work (supervising four Masters students) but also in a number of national and international projects. These include work in the:

  • Kalahari region (e.g. Khamab Nature Reserve and Kgalagadi Transfrontier Park)
  • Kuruman region (Collared 18 cattle to identify spatial patterns in relation to the qualities of vegetation and soil-types available. This project took place in collaboration with Born University in Germany)
  • Woodland Hills Wildlife Estate and Kolomella Iron Ore – ecological monitoring
  • A number of Free State nature reserves (e.g. Distribution of herbivores (kudu and giraffe) and predators (camera traps)

Francois is also involved with species breeding programmes and management (giraffe, buffalo, sable, roan, and rhino) in Korrannaberg, Rustenburg, Hertzogville, Douglas, and Bethlehem as well as animal and ecological monitoring in Kolomella and Beesthoek iron ore.

Besides the collaring of giraffes, Francois and his colleagues are involved in national projects, where they collect milk from lactating giraffes and DNA material, blood samples, and ecto/endo parasites from giraffes in Southern Africa.

With international projects, Francois is working to collect DNA material for the classification of the nine sub-species of giraffe in Africa. He is also involved in projects focusing on the spatial ecology and adaptation of giraffe in Uganda (Murchison Falls), and to save the last 30 giraffe in the DRC- Garamba National Park.

This project has attracted a good deal of international interest. In June 2014, a US film crew (freelancing for Discovery Channel) filmed a documentary on Francois’ research (trailer of documentary). Early in 2015, a second crew, filming for National Geographic, also visited Francois to document his work.

 

More information about Francois’ work is available at the GCF website

Read Francois Deacon's PhD abstract

Direct enquiries to news@ufs.ac.za.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept