Latest News Archive
Please select Category, Year, and then Month to display items
14 June 2024
|
Story Anthony Mthembu
|
Photo Suplied
Jeremiah Hlahla, a UFS student completing his PhD in Botany at the University of Debrecen as part of an exchange initiative funded by the Erasmus+ Mobility Programme.
As part of an exchange initiative facilitated by the Erasmus+ Mobility Programme, Jeremiah Hlahla, a student at the University of the Free State (UFS), is nearing the completion of his PhD studies at the University of Debrecen in Hungary. Hlahla’s journey, which began in February 2024 and is set to conclude in July 2024, has been a remarkable learning opportunity. “As a first time-traveller to Europe, I have thoroughly enjoyed engaging with people from different countries and cultures,” he said.
The benefits of international collaboration
Hlahla is currently pursuing a PhD in Botany, focusing on plant stress physiology. “My current PhD project investigates the physiological, biochemical and morphological responses of vegetable-type soybean, or edamame, to combined drought and heat stress,’’ he explained. He considers the University of Debrecen the ideal institution to complete his research due to its extensive expertise and resources in similar projects. He noted that his colleagues at Debrecen conduct significant work on plant protection against biotic and abiotic stresses, including salt and drought stress, as well as proteins and amino acids in barley and other legumes.
Given the vast knowledge available on similar projects, Hlahla has found substantial engagement with his work at the University of Debrecen. “Upon arrival, I delivered an introductory lecture presenting my UFS project on the synergistic effects of combined drought and heat stress on the physiology and biochemistry of edamame. It was an engaging session as everyone could relate to my work and asked many questions,’’ he said.
Insights gained from the exchange
Hlahla has also gained valuable lessons that will assist him in his research career, including biotechnology and physiology tools. “I learned how to prepare samples and use high-performance liquid chromatography (HPLC) and reversed-phase ultra-high-performance liquid chromatography (UHPLC) to quantify proteins and amino acids,’’ he said. These techniques are beneficial not only for his current work but will also support future soybean research.
As his experience at the University of Debrecen nears its end, Hlahla reflects on the collaborations and friendships he has formed, which stand out as a significant highlight.
Africa the birthplace of mathematics, says Prof Atangana
2017-11-17

Prof Abdon Atangana from the UFS Institute for Groundwater Studies.
Photo: Supplied
Prof Abdon Atangana from the Institute for Groundwater Studies at the University of the Free State recently received the African Award of Applied Mathematics during the International conference "African’s Days of Applied Mathematics" that was held in Errachidia, Morocco. Prof Atangana delivered the opening speech with the title "Africa was a temple of knowledge before: What happened?” The focus of the conference was to offer a forum for the promotion of mathematics and its applications in African countries.
When Europeans first came to Africa, they considered the architecture to be disorganised and thus primitive. It never occurred to them that Africans might have been using a form of mathematics that they hadn’t even discovered yet.
Africa is home to the world’s earliest known use of measuring and calculation. Thousands of years ago Africans were using numerals, algebra and geometry in daily life. “Our continent is the birthplace of both basic and advanced mathematics,” said Prof Atangana.
Africa attracted a series of immigrants who spread knowledge from this continent to the rest of the world.
Measuring and counting
In one of his examples of African mathematics knowledge Prof Atangana referred to the oldest mathematical instrument as the Lebombo bone, a baboon fibula used as a measuring instrument, which was named after the Lebombo Mountains of Swaziland. The world’s oldest evidence of advanced mathematics was also a baboon fibula that was discovered in present-day Democratic Republic of Congo.
Another example he used is the manuscripts in the libraries of the Sankoré University, one of the world’s oldest tertiary institutions. This university in Timbuktu, Mali, is full of manuscripts mainly written in Ajami in the 1200s AD. “When Europeans and Western Asians began visiting and colonising Mali between the 1300s and 1800s, Malians hid the manuscripts in basements, attics and underground, fearing destruction or theft by foreigners. This was certainly a good idea, given the Europeans' history of destroying texts in Kemet and other areas of the continent. Many of the scripts were mathematical and astronomical in nature. In recent years, as many as 700 000 scripts have been rediscovered and attest to the continuous knowledge of advanced mathematics and science in Africa well before European colonisation.
Fractal geometry
“One of Africa’s major achievements was the advanced knowledge of fractal geometry. This knowledge is found in a wide aspect of Africa life: from art, social design structures, architecture, to games, trade and divination systems.
“The binary numeral system was also widely known through Africa before it was known throughout much of the world. There is a theory that it could have influenced Western geometry, which led to the development of digital computers,” he said.
“Can Africa rise again?” Prof Atangana believes it can.
He concluded with a plea to fellow African researchers to do research that will build towards a new Africa.