Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 March 2024 | Story Valentino Ndaba | Photo SUPPLIED
Off-Campus Accommodation Policy
The Off-Campus Accommodation Policy prioritises quality and safety for students.

In a move to prioritise student welfare and ensure high-quality off-campus accommodation, the University of the Free State (UFS) has introduced a comprehensive Off-Campus Accommodation Policy. This policy sets out rigorous accreditation procedures and minimum requirements for private housing providers catering to UFS students.

Naledi Ntsuku, a Higher Certificate in Music Performance student residing in Victoria Kamano student accommodation near the Bloemfontein Campus, expresses her support for the initiative, stating: “Having access to safe and comfortable off-campus accommodation enhances our overall student experience and contributes positively to our academic journey.”

Quintin Koetaan, Senior Director: Housing and Residence Affairs at the UFS, adds, “This policy reinforces our commitment to providing students with conducive living environments, both on and off campus. It sets clear standards and procedures to ensure the well-being and safety of our students.”

Key highlights of the policy include:

Accreditation Process: Accreditation is granted annually, contingent upon meeting specified requirements. Providers must submit various documents, including property deeds, building plans, and tax clearance certificates.

Minimum Requirements: Providers must adhere to standards outlined in the Minimum Accreditation Requirements document, ensuring compliance with regulatory frameworks.

Transparent Procedures: The policy emphasises fairness and consistency in accreditation decisions, providing avenues for addressing appeals and complaints.

NSFAS Funding: Accredited off-campus accommodation may qualify for financial aid from NSFAS, further supporting students’ access to quality housing.

Maintenance and Student Well-being: The policy mandates compliance with relevant legislation regarding construction, repairs, and maintenance, prioritising students’ academic activities and well-being.

Disciplinary Measures: Students residing in accredited off-campus accommodation must adhere to university policies. Transgressions may lead to disciplinary action as per UFS Rules on Student Discipline.

Ensuring quality and compliance for student welfare

The UFS Off-Campus Accommodation Policy reaffirms the university’s dedication to students’ welfare beyond campus boundaries. It aims to create a conducive living and learning environment, ensuring all enrolled students have access to safe and comfortable accommodation.

The policy states: “Students living in accredited off-campus accommodation are expected to live in accordance with the values of the UFS. The UFS policies, regulations and procedures shall also apply to students who live in accredited off-campus accommodation.” This is in alignment with the university’s commitment to Vision 130 which is the strategic plan to reposition the university by its 130th anniversary in 2034, centred around values such as excellence, innovation and impact, accountability, care, social justice, and sustainability.

By adhering to these guidelines, the UFS strives to provide a supportive and enriching experience for its student community, fostering success both academically and personally.

Click to view documentClick here for more information and access to the full policy document.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept