Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 March 2024 | Story Athembele Yangaphi | Photo SUPPLIED
Shoe Box
Supporting Student Success: UFS initiatives like the Santa Shoebox Project and the No Student Hungry Programme combat food insecurity, providing essential resources for students and fostering academic growth and community impact.

The University of the Free State's (UFS’s) Division of Student Affairs recently received a donation of food parcels for needy students from the Gift of the Givers Foundation. The donation forms part of the work done by the Division, the Food Environment Office and Kovsie ACT to positively impact students.

Jady Carelse, Assistant Officer in the Food Environment Office, accepted Gift of the Givers’ 250 food parcels at the UFS’s Bloemfontein Campus. “Starting a year can be very overwhelming for most students, especially first-time-entering students, as they are still trying to adapt to the change of environment,” Carelse said. “The Food Environment Office strives to ensure that food insecurity is not part of their struggle.”

Since its inception in 2011, the No Student Hungry Programme (NSH), a first in a higher education institution, continues to support students with food packages, especially those not funded by the National Student Financial Aid Scheme.

“The NSH has impacted the lives of many students through the food parcel initiative. We have received testimonies from our previous and current beneficiaries on how the initiative has impacted their lives in pursuing their academics,” added Carelse.

The NSH programme's food parcel initiative and the Santa Shoebox Project by the Division of Student Affairs are vital in supporting students, especially those from disadvantaged backgrounds, in their academic pursuits.

The Santa Shoebox Project, which ran from 1 November 2023 to 1 March 2024, is one of many other initiatives that the Kovsie ACT office is highly passionate about. A-Step Assistant, Likhona Dladla, managing Kovsie ACT Community Service Portfolio, said, “We strive to be a helping hand to students by providing them with essential items such as toiletries, sanitary pads, stationery, and clothes to make their academic journey bearable.”

For the 2023/2024 Santa Shoebox Project, UFS residences donated 246 shoeboxes containing donations of toiletries for students in need. Residence Committee members responsible for community portfolios collected the donations from residence students and delivered the items in shoeboxes to the Kovsie ACT office.

“We believe that the donations we have received are of a high standard for the remaining projects and initiatives,” Dladla said.

Kovsie ACT welcomes donations from individuals beyond the university's residential community. Donations can be made directly at the Kovsie ACT office on the Bloemfontein Campus, and the team is ready to assist and accept contributions. Non-residents can also contribute through the annual Big Give donation drive, which encourages donations of non-perishable food items, sanitary pads, and clothing. Look for Big Give donation boxes around campus, gates, and key locations. Stay updated on donation drives and campaigns via campus posters and social media. Please click here to make a monetary donation to support the ‘Back a Buddy’ campaign.  

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept