Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 March 2024 | Story Athembele Yangaphi | Photo SUPPLIED
Shoe Box
Supporting Student Success: UFS initiatives like the Santa Shoebox Project and the No Student Hungry Programme combat food insecurity, providing essential resources for students and fostering academic growth and community impact.

The University of the Free State's (UFS’s) Division of Student Affairs recently received a donation of food parcels for needy students from the Gift of the Givers Foundation. The donation forms part of the work done by the Division, the Food Environment Office and Kovsie ACT to positively impact students.

Jady Carelse, Assistant Officer in the Food Environment Office, accepted Gift of the Givers’ 250 food parcels at the UFS’s Bloemfontein Campus. “Starting a year can be very overwhelming for most students, especially first-time-entering students, as they are still trying to adapt to the change of environment,” Carelse said. “The Food Environment Office strives to ensure that food insecurity is not part of their struggle.”

Since its inception in 2011, the No Student Hungry Programme (NSH), a first in a higher education institution, continues to support students with food packages, especially those not funded by the National Student Financial Aid Scheme.

“The NSH has impacted the lives of many students through the food parcel initiative. We have received testimonies from our previous and current beneficiaries on how the initiative has impacted their lives in pursuing their academics,” added Carelse.

The NSH programme's food parcel initiative and the Santa Shoebox Project by the Division of Student Affairs are vital in supporting students, especially those from disadvantaged backgrounds, in their academic pursuits.

The Santa Shoebox Project, which ran from 1 November 2023 to 1 March 2024, is one of many other initiatives that the Kovsie ACT office is highly passionate about. A-Step Assistant, Likhona Dladla, managing Kovsie ACT Community Service Portfolio, said, “We strive to be a helping hand to students by providing them with essential items such as toiletries, sanitary pads, stationery, and clothes to make their academic journey bearable.”

For the 2023/2024 Santa Shoebox Project, UFS residences donated 246 shoeboxes containing donations of toiletries for students in need. Residence Committee members responsible for community portfolios collected the donations from residence students and delivered the items in shoeboxes to the Kovsie ACT office.

“We believe that the donations we have received are of a high standard for the remaining projects and initiatives,” Dladla said.

Kovsie ACT welcomes donations from individuals beyond the university's residential community. Donations can be made directly at the Kovsie ACT office on the Bloemfontein Campus, and the team is ready to assist and accept contributions. Non-residents can also contribute through the annual Big Give donation drive, which encourages donations of non-perishable food items, sanitary pads, and clothing. Look for Big Give donation boxes around campus, gates, and key locations. Stay updated on donation drives and campaigns via campus posters and social media. Please click here to make a monetary donation to support the ‘Back a Buddy’ campaign.  

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept