Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 March 2024 | Story Leonie Bolleurs | Photo SUPPLIED
Dr Lucas Erasmus
Dr Lucas Erasmus, Junior Researcher in the Department of Physics, has just returned from Belgium where he had his public defence of a joint PhD with Ghent University, titled: Luminescent solar concentrators – where Sm2+ doped phosphors shine.

“I like taking what I have learned from literature and going to the laboratory to test it. Sometimes the results surprise me, leading to additional experiments or refining. This process could continue for several months and even years, with me slowly building the puzzle. And finally, one day, all the pieces come together, and everything becomes very clear to me as a physicist. And if I am lucky, I will have the privilege of knowing a secret about nature that nobody else has known up to this point. However, as an innovator, I am tasked with using this new knowledge to develop ways to manipulate nature to deliver a helpful device.”

These are the thoughts of Dr Lucas Erasmus, Junior Researcher in the Department of Physics at the University of the Free State (UFS), who has just returned from Ghent, Belgium, where he had his public defence of a joint PhD with Ghent University, titled: Luminescent solar concentrators – where Sm2+ doped phosphors shine.

The research project is part of a bilateral collaboration between the Department of Physics at the UFS and the Department of Solid State Sciences at Ghent University. In this study, the strengths, experience, and resources of both research groups – experienced in developing luminescent materials for various applications – are used to ensure a stronger final product. To meet the requirements stipulated in the cooperation agreement between the two institutions for the joint supervision and certification of Dr Erasmus’ doctoral studies, research was conducted both at the UFS and at Ghent University.

Dr Erasmus’ research is significant in the light of rising energy prices, energy scarcity, and the pursuit of a carbon-free society, where there are strong incentives to develop new and renewable energy sources.

Combining windows and solar cells increase their relevancy in many applications

He says that although solar panels play an essential role in renewable energy – since they provide a route to directly convert solar radiation into electricity – there are limitations to installing conventional panels, which are bulky, rigid, and opaque. He believes that combining windows and solar cells could increase their relevance in the built environment, agricultural sector, and modern consumer electronics.

Explaining about the luminescent solar concentrator (LSC) in his study, he states that it is a device used as a large-area solar radiation collector that converts and emits radiation. The emitted radiation is directed to photovoltaic cells located in the small side area of the device. According to him, a basic LSC consists of a transparent waveguide with an embedded luminescent material and a strategically placed photovoltaic cell on the edge.

Dr Erasmus continues, “The large area of the waveguide collects a portion of the solar radiation, while the luminescent material absorbs the energy and downshifts it to longer wavelengths. Internal reflection directs the emitted photons towards smaller areas on the sides where the photovoltaic cells are used to convert the concentrated light into electricity.”

In his view, creating a large and efficient LSC is a challenging endeavour that requires an in-depth study of multiple domains. “This includes developing and optimising the luminescent material, studying its behaviour and the characteristics of the waveguide, and finally adding these two components and developing, characterising, and simulating the hybrid device,” he remarks.

“While the current prototype we have developed delivers good results, it is still far from perfect and not commercially viable,” he says, stating that this study could, however, serve as a guide for future researchers interested in developing LCSs. Dr Erasmus believes the underlying science behind the results contributes to a general understanding of the materials, making this study valuable to other fields and contributing to the larger body of science. At the end of the study, he also makes some recommendations for future research in this field. 

Study a reflection of theoretical knowledge and a practical system

The public defence consisted of both an internal and an external defence. The internal defence took place in January at the UFS between Dr Erasmus and the examination committee. The external defence occurred at Ghent University and was also open to the broader public. Also present at this event in Belgium were colleagues from the UFS – Prof David Motaung, an examiner; Prof Koos Terblans, co-supervisor; and Prof Hendrik Swart, supervisor for the PhD thesis.

Dr Erasmus’ experience of the oral examination was that the examiners were primarily positive in their critique but also thorough in their questioning. According to him, some of their remarks pointed out that they were impressed with the meticulous planning, execution, and interpretation of the experimental results and that the researchers involved ensured that any parameter that might have influenced the device was maximised. “Moreover, they liked the fact that I went all the way from theoretical knowledge to a practical system. The examiners also noted that the study compares well with the current state-of-the-art research in the field,” adds Dr Erasmus.

He says that having the public defence in Belgium was a once-in-a-lifetime experience, allowing him to interact and deliberate directly with the examiners and communicate their findings and conclusions to the broader public. Dr Erasmus hopes that this will lead to stronger collaboration and better public sentiment toward spending funding for scientific projects.

For future steps, he states, the research group involved in the project plans to continue this research by further increasing the device's efficiency. “To this end, we have already developed another luminescent material that can address some of the challenges we encountered while developing the first prototype device. This forms part of the work that Johané Odendaal is doing in her master’s degree, of which I am a co-supervisor. We also plan to enlarge the scope of our research to consider the challenges that are currently hampering the next generation of photovoltaic cells and to find ways in which we could address these issues,” comments Dr Erasmus.

News Archive

Sarah, our own champion
2008-11-05

 
Sarah Shannon at the Paralympic Games in Beijing

 

Sarah Shannon, a second-year student in the Postgraduate Certificate in Education, has been involved in disability sport on national level for the past 12 years. Sarah has cerebral palsy.

In 1996 she participated at the South African National Championships for the physically disabled for the first time, entering for several sporting codes and winning five gold medals. In swimming she participates in the S3 class together with other swimmers that have comparable abilities to hers.

In 1997 she decided to focus on swimming competitively. She participated in her first national championships for swimming that year. After that (1998) she represented South Africa on international level at the International Paralympic Committee’s (IPC) Swimming World Championships in New Zealand where she ended 4th in the 50m backstroke and 7th in both the 50m and 100m freestyle in her class.

In 1999 she represented South Africa in Johannesburg at the 7th All Africa Games and won a silver medal for the 50m freestyle and a bronze medal for the 100m freestyle.

In 2000 she was part of the South African team at the Sydney Paralympic Games where she reached the finals and finished 7th in the 50m backstroke and 8th in the 50m freestyle. Northern-KwaZulu-Natal also awarded her the Junior Sportswoman of the Year award in 2001. In 2002 she participated at the South African Senior National swimming championships for KwaZulu-Natal in the multi-disability category.

In 2005 she completed the Midmar Mile. She also represented South Africa at the world championships for athletes with cerebral palsy in Boston in the United States of America. She won two gold medals for respectively the 50m freestyle and the 50m backstroke and two silver medals in the 100m and 200m freestyle. She was also nominated to represent South Africa as athlete’s representative on the world committee of CPISRA (Cerebral Palsy International Sports and Recreation Association). In this year Sarah also received the KwaZulu-Natal Premier’s Sportswoman with a disability award of the year.

In 2006 she qualified for the IPC world championships but could not attend.

In 2007 she represented South Africa once more at the Visa Paralympic World Cup in Manchester in the United Kingdom where she broke the South African record in the 50m backstroke, finishing 7th in the 50m freestyle and 6th in the 50m backstroke.

She was also part of the very successful Team South Africa to the Paralympic Games in Beijing. She reached the finals in both the 50m backstroke and 50m freestyle. She finished 7th in the 50m freestyle and 6th in the 50m backstroke in personal best times for both events. She has been participating in the able bodied South African National Swimming Championships since 2002. She is currently ranked 2nd in the world for short course items and 11th for the long course items. She is truly our best swimmer in the S3 class.
 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept