Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 March 2024 | Story Leonie Bolleurs | Photo SUPPLIED
Dr Lucas Erasmus
Dr Lucas Erasmus, Junior Researcher in the Department of Physics, has just returned from Belgium where he had his public defence of a joint PhD with Ghent University, titled: Luminescent solar concentrators – where Sm2+ doped phosphors shine.

“I like taking what I have learned from literature and going to the laboratory to test it. Sometimes the results surprise me, leading to additional experiments or refining. This process could continue for several months and even years, with me slowly building the puzzle. And finally, one day, all the pieces come together, and everything becomes very clear to me as a physicist. And if I am lucky, I will have the privilege of knowing a secret about nature that nobody else has known up to this point. However, as an innovator, I am tasked with using this new knowledge to develop ways to manipulate nature to deliver a helpful device.”

These are the thoughts of Dr Lucas Erasmus, Junior Researcher in the Department of Physics at the University of the Free State (UFS), who has just returned from Ghent, Belgium, where he had his public defence of a joint PhD with Ghent University, titled: Luminescent solar concentrators – where Sm2+ doped phosphors shine.

The research project is part of a bilateral collaboration between the Department of Physics at the UFS and the Department of Solid State Sciences at Ghent University. In this study, the strengths, experience, and resources of both research groups – experienced in developing luminescent materials for various applications – are used to ensure a stronger final product. To meet the requirements stipulated in the cooperation agreement between the two institutions for the joint supervision and certification of Dr Erasmus’ doctoral studies, research was conducted both at the UFS and at Ghent University.

Dr Erasmus’ research is significant in the light of rising energy prices, energy scarcity, and the pursuit of a carbon-free society, where there are strong incentives to develop new and renewable energy sources.

Combining windows and solar cells increase their relevancy in many applications

He says that although solar panels play an essential role in renewable energy – since they provide a route to directly convert solar radiation into electricity – there are limitations to installing conventional panels, which are bulky, rigid, and opaque. He believes that combining windows and solar cells could increase their relevance in the built environment, agricultural sector, and modern consumer electronics.

Explaining about the luminescent solar concentrator (LSC) in his study, he states that it is a device used as a large-area solar radiation collector that converts and emits radiation. The emitted radiation is directed to photovoltaic cells located in the small side area of the device. According to him, a basic LSC consists of a transparent waveguide with an embedded luminescent material and a strategically placed photovoltaic cell on the edge.

Dr Erasmus continues, “The large area of the waveguide collects a portion of the solar radiation, while the luminescent material absorbs the energy and downshifts it to longer wavelengths. Internal reflection directs the emitted photons towards smaller areas on the sides where the photovoltaic cells are used to convert the concentrated light into electricity.”

In his view, creating a large and efficient LSC is a challenging endeavour that requires an in-depth study of multiple domains. “This includes developing and optimising the luminescent material, studying its behaviour and the characteristics of the waveguide, and finally adding these two components and developing, characterising, and simulating the hybrid device,” he remarks.

“While the current prototype we have developed delivers good results, it is still far from perfect and not commercially viable,” he says, stating that this study could, however, serve as a guide for future researchers interested in developing LCSs. Dr Erasmus believes the underlying science behind the results contributes to a general understanding of the materials, making this study valuable to other fields and contributing to the larger body of science. At the end of the study, he also makes some recommendations for future research in this field. 

Study a reflection of theoretical knowledge and a practical system

The public defence consisted of both an internal and an external defence. The internal defence took place in January at the UFS between Dr Erasmus and the examination committee. The external defence occurred at Ghent University and was also open to the broader public. Also present at this event in Belgium were colleagues from the UFS – Prof David Motaung, an examiner; Prof Koos Terblans, co-supervisor; and Prof Hendrik Swart, supervisor for the PhD thesis.

Dr Erasmus’ experience of the oral examination was that the examiners were primarily positive in their critique but also thorough in their questioning. According to him, some of their remarks pointed out that they were impressed with the meticulous planning, execution, and interpretation of the experimental results and that the researchers involved ensured that any parameter that might have influenced the device was maximised. “Moreover, they liked the fact that I went all the way from theoretical knowledge to a practical system. The examiners also noted that the study compares well with the current state-of-the-art research in the field,” adds Dr Erasmus.

He says that having the public defence in Belgium was a once-in-a-lifetime experience, allowing him to interact and deliberate directly with the examiners and communicate their findings and conclusions to the broader public. Dr Erasmus hopes that this will lead to stronger collaboration and better public sentiment toward spending funding for scientific projects.

For future steps, he states, the research group involved in the project plans to continue this research by further increasing the device's efficiency. “To this end, we have already developed another luminescent material that can address some of the challenges we encountered while developing the first prototype device. This forms part of the work that Johané Odendaal is doing in her master’s degree, of which I am a co-supervisor. We also plan to enlarge the scope of our research to consider the challenges that are currently hampering the next generation of photovoltaic cells and to find ways in which we could address these issues,” comments Dr Erasmus.

News Archive

Heinrich Brüssow named as Kovsie Alumnus of the Year
2010-08-19

Ms Jackie Ntshingila  Prof. Teuns Verschoor  Prof. Benito Khotseng  Heinrich Brüssow 

The Alumni of the University of the Free State (UFS) have named Heinrich Brüssow as the Kovsie Alumnus of the Year for 2009.

At the same time, Ms Jackie Ntshingila, the Provincial Manager of the Small Enterprise Development Agency (SEDA), will receive the Kovsie Alumni Cum Laude Award, while the Executive Management Award will be awarded to Prof. Teuns Verschoor, acting Senior Vice-Rector at the UFS, and Prof. Benito Khotseng. These awards, which are made annually to honour alumni of the UFS for their exceptional achievements and contributions to the university, will be awarded on Friday, 3 September 2010.

Heinrich is currently one of the most formidable Free State Cheetahs players. During the international Super 14 Competition he was a pillar of strength for his team in many respects. He was one of the outstanding players in the match between the Springboks and the Lions. He has established himself in the triumphant Springbok team as one of the definite choices. He received the Man-of-the-Match award in the Springboks’ victory over the All Blacks on 25 July 2009, as well as the awards as the Provincial Player of the Castle SA 2009 Tournament, the SA Rugby Young Player of the Year 2009 and the 2009 Sports24 Performer of the Month.

Ms Ntshingila will receive the Kovsie Alumni Cum Laude Award for her role in the business development sector in the Free State and particularly the empowerment of women in the business sector. Her constructive inputs on various committees have lead to the outstanding role that she has played to expand SEDA in the Free State from 1 to 56 members and five branches during a relatively short period.

Prof. Verschoor will receive an Executive Management Award for the tremendous role he has played in many student matters, research, transformation and other university matters. Recognition is also given to the role that he fulfilled as acting Rector of the university during 2008-2009. In this he has emphasised his passion and commitment towards the university. In 2004 he received a Centenary Medal for management, diversity and student transformation.

Prof. Khotseng will receive an Executive Management Award for his influential and leading role during the 1990s, when the UFS was established as an outstanding institution. Prof. Khotseng played a leading and influential role as Vice-Rector: Student Affairs. He has served on the UFS Council from 1993 and in 1994 he accepted the position as Senior Manager: Strategic Programmes at Kovsies. He managed transformation and the marketing of the university in the black community with distinction. In 1995 he helped to diffuse the conflict in residences and to create a culture of learning. With the help of the Multicultural and Transformation Committees he taught persons to respect and understand one another. In 2004 he also received a Centenary Medal. 

The coveted Kovsie Alumni Awards will be handed over at a Kovsie Alumni breakfast. All alumni are welcome at the breakfast which will take place in the Reitz Hall of the UFS Centenary Complex. The cost is R50 per person and includes a delicious breakfast. If you are interested in attending, please contact Annanda Calitz at 051 401 3382 or ficka@ufs.ac.za  
 
Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za
19 August 2010

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept