Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 March 2024 | Story Leonie Bolleurs | Photo SUPPLIED
Dr Lucas Erasmus
Dr Lucas Erasmus, Junior Researcher in the Department of Physics, has just returned from Belgium where he had his public defence of a joint PhD with Ghent University, titled: Luminescent solar concentrators – where Sm2+ doped phosphors shine.

“I like taking what I have learned from literature and going to the laboratory to test it. Sometimes the results surprise me, leading to additional experiments or refining. This process could continue for several months and even years, with me slowly building the puzzle. And finally, one day, all the pieces come together, and everything becomes very clear to me as a physicist. And if I am lucky, I will have the privilege of knowing a secret about nature that nobody else has known up to this point. However, as an innovator, I am tasked with using this new knowledge to develop ways to manipulate nature to deliver a helpful device.”

These are the thoughts of Dr Lucas Erasmus, Junior Researcher in the Department of Physics at the University of the Free State (UFS), who has just returned from Ghent, Belgium, where he had his public defence of a joint PhD with Ghent University, titled: Luminescent solar concentrators – where Sm2+ doped phosphors shine.

The research project is part of a bilateral collaboration between the Department of Physics at the UFS and the Department of Solid State Sciences at Ghent University. In this study, the strengths, experience, and resources of both research groups – experienced in developing luminescent materials for various applications – are used to ensure a stronger final product. To meet the requirements stipulated in the cooperation agreement between the two institutions for the joint supervision and certification of Dr Erasmus’ doctoral studies, research was conducted both at the UFS and at Ghent University.

Dr Erasmus’ research is significant in the light of rising energy prices, energy scarcity, and the pursuit of a carbon-free society, where there are strong incentives to develop new and renewable energy sources.

Combining windows and solar cells increase their relevancy in many applications

He says that although solar panels play an essential role in renewable energy – since they provide a route to directly convert solar radiation into electricity – there are limitations to installing conventional panels, which are bulky, rigid, and opaque. He believes that combining windows and solar cells could increase their relevance in the built environment, agricultural sector, and modern consumer electronics.

Explaining about the luminescent solar concentrator (LSC) in his study, he states that it is a device used as a large-area solar radiation collector that converts and emits radiation. The emitted radiation is directed to photovoltaic cells located in the small side area of the device. According to him, a basic LSC consists of a transparent waveguide with an embedded luminescent material and a strategically placed photovoltaic cell on the edge.

Dr Erasmus continues, “The large area of the waveguide collects a portion of the solar radiation, while the luminescent material absorbs the energy and downshifts it to longer wavelengths. Internal reflection directs the emitted photons towards smaller areas on the sides where the photovoltaic cells are used to convert the concentrated light into electricity.”

In his view, creating a large and efficient LSC is a challenging endeavour that requires an in-depth study of multiple domains. “This includes developing and optimising the luminescent material, studying its behaviour and the characteristics of the waveguide, and finally adding these two components and developing, characterising, and simulating the hybrid device,” he remarks.

“While the current prototype we have developed delivers good results, it is still far from perfect and not commercially viable,” he says, stating that this study could, however, serve as a guide for future researchers interested in developing LCSs. Dr Erasmus believes the underlying science behind the results contributes to a general understanding of the materials, making this study valuable to other fields and contributing to the larger body of science. At the end of the study, he also makes some recommendations for future research in this field. 

Study a reflection of theoretical knowledge and a practical system

The public defence consisted of both an internal and an external defence. The internal defence took place in January at the UFS between Dr Erasmus and the examination committee. The external defence occurred at Ghent University and was also open to the broader public. Also present at this event in Belgium were colleagues from the UFS – Prof David Motaung, an examiner; Prof Koos Terblans, co-supervisor; and Prof Hendrik Swart, supervisor for the PhD thesis.

Dr Erasmus’ experience of the oral examination was that the examiners were primarily positive in their critique but also thorough in their questioning. According to him, some of their remarks pointed out that they were impressed with the meticulous planning, execution, and interpretation of the experimental results and that the researchers involved ensured that any parameter that might have influenced the device was maximised. “Moreover, they liked the fact that I went all the way from theoretical knowledge to a practical system. The examiners also noted that the study compares well with the current state-of-the-art research in the field,” adds Dr Erasmus.

He says that having the public defence in Belgium was a once-in-a-lifetime experience, allowing him to interact and deliberate directly with the examiners and communicate their findings and conclusions to the broader public. Dr Erasmus hopes that this will lead to stronger collaboration and better public sentiment toward spending funding for scientific projects.

For future steps, he states, the research group involved in the project plans to continue this research by further increasing the device's efficiency. “To this end, we have already developed another luminescent material that can address some of the challenges we encountered while developing the first prototype device. This forms part of the work that Johané Odendaal is doing in her master’s degree, of which I am a co-supervisor. We also plan to enlarge the scope of our research to consider the challenges that are currently hampering the next generation of photovoltaic cells and to find ways in which we could address these issues,” comments Dr Erasmus.

News Archive

Postgraduates’ new Kovsies home
2013-05-10

 
Some of the guests attending the launch, included from left: Prof Driekie Hay, Vice-Rector: Academic, Dr Henriette van den Berg, Director: Postgraduate School and Prof Corli Witthuhn, Vice-Rector: Research.
10 May 2013
Photo: Johan Roux

Postgraduate students and their academic 'parents' at the University of the Free State (UFS) now have a dedicated physical, emotional and electronic space to provide for their specialised needs in order to further promote research excellence at the UFS.

The university's Postgraduate School was launched in May 2011, but ventured further in the quest to fulfil and expand its mandate with new initiatives. These different aspects of the school were launched on Wednesday 8 May 2013 in the CR Swart Auditorium on the Bloemfontein Campus. The postgraduate strategy, postgraduate prospectus, the website and the headquarters of the Postgraduate School in the Johannes Brill Building were all unveiled and launched.

Prof Driekie Hay, Vice-Rector: Academic, who was a major driving force behind the formation of the Postgraduate School, during her address at the opening emphasised the multifaceted and unique relationships which often exist between students and supervisors.

Prof Hay, who has a distinguished academic background in postgraduate teaching, made plain her expectations for the Postgraduate School. She said it aims to "create an intellectual space for postgraduate students and supervisors" in order to produce world-class intellectuals at this university.

She said the school will empower both students who often don't know what to expect from supervision, as well as supervisors who often lack supervision skills. Through this it will be possible to create healthy, productive relationships between the distinct pairs in often misunderstood, unbalanced and intricate interactions.

Dr Henriette van den Berg, Director of the Postgraduate School, introduced the strategic plan of the school and emphasised the great strides that have already been made and what still needs to be done at the UFS in terms of postgraduate teaching. According to her, the Postgraduate School aims towards "holistic development of postgraduate students with transferable skills," through a multi-level and institution-wide approach at the university.

"Our aim is to develop a one-step service for postgraduate students, involving all the different stakeholders," she said.

The new Postgraduate School website was also showcased during the event. Reachable through a number of avenues on the main website, the site offers a digital version of the Johannes Brill Building. Brimming with features catering specifically for local, international, current and prospective students, the website provides crucial information.

The Johannes Brill Building's refurbished interior, with staff offices, seminar rooms and social spaces, were also showcased to UFS' staff and students. The initial phase of the Supervisors' Wall of Fame was also unveiled. According to Dr van den Berg , the wall will after completion bestow much-deserved praise on a hand-picked group of 60 supervisors who have respectively been responsible for more than 300 and more than 500 successful PhD and master's candidates over the past decade.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept