Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 March 2024 | Story Leonie Bolleurs | Photo SUPPLIED
Dr Lucas Erasmus
Dr Lucas Erasmus, Junior Researcher in the Department of Physics, has just returned from Belgium where he had his public defence of a joint PhD with Ghent University, titled: Luminescent solar concentrators – where Sm2+ doped phosphors shine.

“I like taking what I have learned from literature and going to the laboratory to test it. Sometimes the results surprise me, leading to additional experiments or refining. This process could continue for several months and even years, with me slowly building the puzzle. And finally, one day, all the pieces come together, and everything becomes very clear to me as a physicist. And if I am lucky, I will have the privilege of knowing a secret about nature that nobody else has known up to this point. However, as an innovator, I am tasked with using this new knowledge to develop ways to manipulate nature to deliver a helpful device.”

These are the thoughts of Dr Lucas Erasmus, Junior Researcher in the Department of Physics at the University of the Free State (UFS), who has just returned from Ghent, Belgium, where he had his public defence of a joint PhD with Ghent University, titled: Luminescent solar concentrators – where Sm2+ doped phosphors shine.

The research project is part of a bilateral collaboration between the Department of Physics at the UFS and the Department of Solid State Sciences at Ghent University. In this study, the strengths, experience, and resources of both research groups – experienced in developing luminescent materials for various applications – are used to ensure a stronger final product. To meet the requirements stipulated in the cooperation agreement between the two institutions for the joint supervision and certification of Dr Erasmus’ doctoral studies, research was conducted both at the UFS and at Ghent University.

Dr Erasmus’ research is significant in the light of rising energy prices, energy scarcity, and the pursuit of a carbon-free society, where there are strong incentives to develop new and renewable energy sources.

Combining windows and solar cells increase their relevancy in many applications

He says that although solar panels play an essential role in renewable energy – since they provide a route to directly convert solar radiation into electricity – there are limitations to installing conventional panels, which are bulky, rigid, and opaque. He believes that combining windows and solar cells could increase their relevance in the built environment, agricultural sector, and modern consumer electronics.

Explaining about the luminescent solar concentrator (LSC) in his study, he states that it is a device used as a large-area solar radiation collector that converts and emits radiation. The emitted radiation is directed to photovoltaic cells located in the small side area of the device. According to him, a basic LSC consists of a transparent waveguide with an embedded luminescent material and a strategically placed photovoltaic cell on the edge.

Dr Erasmus continues, “The large area of the waveguide collects a portion of the solar radiation, while the luminescent material absorbs the energy and downshifts it to longer wavelengths. Internal reflection directs the emitted photons towards smaller areas on the sides where the photovoltaic cells are used to convert the concentrated light into electricity.”

In his view, creating a large and efficient LSC is a challenging endeavour that requires an in-depth study of multiple domains. “This includes developing and optimising the luminescent material, studying its behaviour and the characteristics of the waveguide, and finally adding these two components and developing, characterising, and simulating the hybrid device,” he remarks.

“While the current prototype we have developed delivers good results, it is still far from perfect and not commercially viable,” he says, stating that this study could, however, serve as a guide for future researchers interested in developing LCSs. Dr Erasmus believes the underlying science behind the results contributes to a general understanding of the materials, making this study valuable to other fields and contributing to the larger body of science. At the end of the study, he also makes some recommendations for future research in this field. 

Study a reflection of theoretical knowledge and a practical system

The public defence consisted of both an internal and an external defence. The internal defence took place in January at the UFS between Dr Erasmus and the examination committee. The external defence occurred at Ghent University and was also open to the broader public. Also present at this event in Belgium were colleagues from the UFS – Prof David Motaung, an examiner; Prof Koos Terblans, co-supervisor; and Prof Hendrik Swart, supervisor for the PhD thesis.

Dr Erasmus’ experience of the oral examination was that the examiners were primarily positive in their critique but also thorough in their questioning. According to him, some of their remarks pointed out that they were impressed with the meticulous planning, execution, and interpretation of the experimental results and that the researchers involved ensured that any parameter that might have influenced the device was maximised. “Moreover, they liked the fact that I went all the way from theoretical knowledge to a practical system. The examiners also noted that the study compares well with the current state-of-the-art research in the field,” adds Dr Erasmus.

He says that having the public defence in Belgium was a once-in-a-lifetime experience, allowing him to interact and deliberate directly with the examiners and communicate their findings and conclusions to the broader public. Dr Erasmus hopes that this will lead to stronger collaboration and better public sentiment toward spending funding for scientific projects.

For future steps, he states, the research group involved in the project plans to continue this research by further increasing the device's efficiency. “To this end, we have already developed another luminescent material that can address some of the challenges we encountered while developing the first prototype device. This forms part of the work that Johané Odendaal is doing in her master’s degree, of which I am a co-supervisor. We also plan to enlarge the scope of our research to consider the challenges that are currently hampering the next generation of photovoltaic cells and to find ways in which we could address these issues,” comments Dr Erasmus.

News Archive

Shortage of quantity surveyors discussed at UFS
2006-03-24

During the recent visit of the Association of South African Quantity Surveyors (ASAQS) to the University of the Free State (UFS) were from the left Mr Egon Wortmann (Director: ASAQS), Prof Basie Verster (representative of the Free State on the ASAQS and head of the Department of Quantity Surveying and Construction Management at the UFS), Mr  Greyling Venter (Chairperson:  Free State branch of the ASAQS), Prof DG Brümmer(Vice-President:  ASAQS) and Mr  Patrick Waterson (President:  ASAQS).
Photo supplied

 

Shortage of quantity surveyors discussed at UFS

 “The South African building industry is experiencing an unprecedented high level of economic growth and prosperity.  This is causing a definite shortage of registered quantity surveyors,” said Mr Egon Wortmann, Director of the Association of South African Quantity Surveyors(ASAQS) during the association’s recent visit to the Department of Quantity Surveying and Construction Management at the University of the Free State (UFS).

 “This shortage is especially noticeable in local and national governments where unqualified and inexperienced staff, consultants and/or facilitators are now appointed,” said Mr Wortmann. 

 In doing so, the authorities that have adopted this approach are according to Mr Wortmann actually acting illegally and are not in compliance with the legal and statutory requirements of South Africa.  “These unprofessional practices are unproductive, it leads to frustration and is strongly condemned by the ASAQS,” he said.

 “The service delivery of these unqualified and unregistered service providers is often sub standard and does not comply to the legal requirements of the profession.  It may also result in the tarnishing of the image and high professional standards set by the quantity surveying profession,” said Mr Wortmann.

 “Universities offering programmes in quantity-surveying and construction management are also negatively affected by the high levels of activity in the building environment.  Suitable lecturing staff are leaving the academic institutions as they are attracted to better opportunities being offered in the building industry. The ability of the tertiary institutions to attract young academics, to train them and to keep them in the longer term, is therefore almost impossible”, said Prof Basie Verster, head of the Department of Quantity Surveying and Construction Management at the UFS and representative of the Free State on the ASAQS.

 According to Prof Verster the UFS supplies more than its quota of qualified quantity surveyors to the South African building industry.  “Although more than 460 students are registered in construction related programmes at the UFS, we are as the ASAQS’s concerned about the shortage of students that can enter the construction industry.  In our case, we  are experiencing a shortage in black female students,” he said.

 “Of the 460 postgraduate students, 38% are black of which 20% are female students.  Graduates do also not necessarily stay in the country.  As the UFS’s programmes are accredited overseas, a lot of our students leave the country for working opportunities elsewhere,” said Prof Verster.

 Mr Patrick Waterson, President of the ASAQS, appealed to quantity surveyors to, when they are approached, consider academic careers or to make themselves available to lecture on a part time basis.  “I also appeal to quantity-surveying practices, construction companies and developers to consider taking part in training activities,” he said.

 The ASAQS has over the years developed a proud tradition within the quantity-surveying profession. Consequently membership of this organisation is a sought after goal for many members within the building environment. International agreements with various countries are also in place whereby it is mutually agreed that local as well as overseas qualifications are mutually acceptable on a reciprocal basis. 

 A more recent addition to the list of agreements is the reciprocity agreement entered into with the Royal Institution of Chartered Surveyors which makes it possible for South African based quantity surveyors to practice in over 120 countries worldwide.

 Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za 
23 March 2006

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept