Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 March 2024 | Story Leonie Bolleurs | Photo SUPPLIED
Dr Lucas Erasmus
Dr Lucas Erasmus, Junior Researcher in the Department of Physics, has just returned from Belgium where he had his public defence of a joint PhD with Ghent University, titled: Luminescent solar concentrators – where Sm2+ doped phosphors shine.

“I like taking what I have learned from literature and going to the laboratory to test it. Sometimes the results surprise me, leading to additional experiments or refining. This process could continue for several months and even years, with me slowly building the puzzle. And finally, one day, all the pieces come together, and everything becomes very clear to me as a physicist. And if I am lucky, I will have the privilege of knowing a secret about nature that nobody else has known up to this point. However, as an innovator, I am tasked with using this new knowledge to develop ways to manipulate nature to deliver a helpful device.”

These are the thoughts of Dr Lucas Erasmus, Junior Researcher in the Department of Physics at the University of the Free State (UFS), who has just returned from Ghent, Belgium, where he had his public defence of a joint PhD with Ghent University, titled: Luminescent solar concentrators – where Sm2+ doped phosphors shine.

The research project is part of a bilateral collaboration between the Department of Physics at the UFS and the Department of Solid State Sciences at Ghent University. In this study, the strengths, experience, and resources of both research groups – experienced in developing luminescent materials for various applications – are used to ensure a stronger final product. To meet the requirements stipulated in the cooperation agreement between the two institutions for the joint supervision and certification of Dr Erasmus’ doctoral studies, research was conducted both at the UFS and at Ghent University.

Dr Erasmus’ research is significant in the light of rising energy prices, energy scarcity, and the pursuit of a carbon-free society, where there are strong incentives to develop new and renewable energy sources.

Combining windows and solar cells increase their relevancy in many applications

He says that although solar panels play an essential role in renewable energy – since they provide a route to directly convert solar radiation into electricity – there are limitations to installing conventional panels, which are bulky, rigid, and opaque. He believes that combining windows and solar cells could increase their relevance in the built environment, agricultural sector, and modern consumer electronics.

Explaining about the luminescent solar concentrator (LSC) in his study, he states that it is a device used as a large-area solar radiation collector that converts and emits radiation. The emitted radiation is directed to photovoltaic cells located in the small side area of the device. According to him, a basic LSC consists of a transparent waveguide with an embedded luminescent material and a strategically placed photovoltaic cell on the edge.

Dr Erasmus continues, “The large area of the waveguide collects a portion of the solar radiation, while the luminescent material absorbs the energy and downshifts it to longer wavelengths. Internal reflection directs the emitted photons towards smaller areas on the sides where the photovoltaic cells are used to convert the concentrated light into electricity.”

In his view, creating a large and efficient LSC is a challenging endeavour that requires an in-depth study of multiple domains. “This includes developing and optimising the luminescent material, studying its behaviour and the characteristics of the waveguide, and finally adding these two components and developing, characterising, and simulating the hybrid device,” he remarks.

“While the current prototype we have developed delivers good results, it is still far from perfect and not commercially viable,” he says, stating that this study could, however, serve as a guide for future researchers interested in developing LCSs. Dr Erasmus believes the underlying science behind the results contributes to a general understanding of the materials, making this study valuable to other fields and contributing to the larger body of science. At the end of the study, he also makes some recommendations for future research in this field. 

Study a reflection of theoretical knowledge and a practical system

The public defence consisted of both an internal and an external defence. The internal defence took place in January at the UFS between Dr Erasmus and the examination committee. The external defence occurred at Ghent University and was also open to the broader public. Also present at this event in Belgium were colleagues from the UFS – Prof David Motaung, an examiner; Prof Koos Terblans, co-supervisor; and Prof Hendrik Swart, supervisor for the PhD thesis.

Dr Erasmus’ experience of the oral examination was that the examiners were primarily positive in their critique but also thorough in their questioning. According to him, some of their remarks pointed out that they were impressed with the meticulous planning, execution, and interpretation of the experimental results and that the researchers involved ensured that any parameter that might have influenced the device was maximised. “Moreover, they liked the fact that I went all the way from theoretical knowledge to a practical system. The examiners also noted that the study compares well with the current state-of-the-art research in the field,” adds Dr Erasmus.

He says that having the public defence in Belgium was a once-in-a-lifetime experience, allowing him to interact and deliberate directly with the examiners and communicate their findings and conclusions to the broader public. Dr Erasmus hopes that this will lead to stronger collaboration and better public sentiment toward spending funding for scientific projects.

For future steps, he states, the research group involved in the project plans to continue this research by further increasing the device's efficiency. “To this end, we have already developed another luminescent material that can address some of the challenges we encountered while developing the first prototype device. This forms part of the work that Johané Odendaal is doing in her master’s degree, of which I am a co-supervisor. We also plan to enlarge the scope of our research to consider the challenges that are currently hampering the next generation of photovoltaic cells and to find ways in which we could address these issues,” comments Dr Erasmus.

News Archive

Producers to save thousands with routine marketing strategies, says UFS researcher
2014-09-01

 

Photo: en.wikipedia.org

Using derivative markets as a marketing strategy can be complicated for farmers. The producers tend to use high risk strategies which include the selling of the crop on the cash market after harvest; whilst the high market risks require innovative strategies including the use of futures and options as traded on the South African Futures Exchange (SAFEX).

Using these innovative strategies are mostly due to a lack of interest and knowledge of the market. The purpose of the research conducted by Dr Dirk Strydom and Manfred Venter from the Department of Agricultural Economics at the University of the Free State (UFS) is to examine whether the adoption of a basic routine strategy is better than adopting no strategy at all.

The research illustrates that by using a Stochastic Efficiency with Respect to a Function (SERF) and Cumulative Distribution Function (CDF) that the use of five basic routine marketing strategies can be more rewarding. These basic strategies are:
• Put (plant time)
• Twelve-segment pricing
• Three-segment pricing
• Put (pollination)(Critical Moment in production/marketing process), and
• Pricing during pollination phase.

These strategies can be adopted by farmers without an in-depth understanding of the market and market-signals. Farmers can save as much as R1.6 million per year on a 2000ha farm with an average yield.

The results obtained from the research illustrate that each strategy is different for each crop. Very important is that the hedging strategies are better than no hedging strategy at all.

This research can also be applicable to the procurement side of the supply chain.

Maize milling firms use complex procurement strategies to procure their raw materials, or sometimes no strategy at all. In this research, basic routine price hedging strategies were analysed as part of the procurement of white maize over a ten-year period ranging from 2002–2012. Part of the pricing strategies used to procure white maize over the period of ten years were a call and min/max strategy. These strategies were compared to the baseline spot market. The data was obtained from the Johannesburg Stock Exchange’s Agricultural Products Division better known as SAFEX.

The results obtained from the research prove that by using basic routine price-hedging strategies to procure white maize, it is more beneficial to do so than by procuring from the spot market (a difference of more than R100 mil).

Thus, it can be concluded that it is not always necessary to use a complex method of sourcing white maize through SAFEX, to be efficient. By implementing a basic routine price hedging strategy year on year it can be better than procuring from the spot market.

Understanding the Maize Maze by Dr Dirk Strydom and Manfred Venter (pdf) - The Dairy Mail


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept