Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 March 2024 | Story Leonie Bolleurs | Photo SUPPLIED
Dr Lucas Erasmus
Dr Lucas Erasmus, Junior Researcher in the Department of Physics, has just returned from Belgium where he had his public defence of a joint PhD with Ghent University, titled: Luminescent solar concentrators – where Sm2+ doped phosphors shine.

“I like taking what I have learned from literature and going to the laboratory to test it. Sometimes the results surprise me, leading to additional experiments or refining. This process could continue for several months and even years, with me slowly building the puzzle. And finally, one day, all the pieces come together, and everything becomes very clear to me as a physicist. And if I am lucky, I will have the privilege of knowing a secret about nature that nobody else has known up to this point. However, as an innovator, I am tasked with using this new knowledge to develop ways to manipulate nature to deliver a helpful device.”

These are the thoughts of Dr Lucas Erasmus, Junior Researcher in the Department of Physics at the University of the Free State (UFS), who has just returned from Ghent, Belgium, where he had his public defence of a joint PhD with Ghent University, titled: Luminescent solar concentrators – where Sm2+ doped phosphors shine.

The research project is part of a bilateral collaboration between the Department of Physics at the UFS and the Department of Solid State Sciences at Ghent University. In this study, the strengths, experience, and resources of both research groups – experienced in developing luminescent materials for various applications – are used to ensure a stronger final product. To meet the requirements stipulated in the cooperation agreement between the two institutions for the joint supervision and certification of Dr Erasmus’ doctoral studies, research was conducted both at the UFS and at Ghent University.

Dr Erasmus’ research is significant in the light of rising energy prices, energy scarcity, and the pursuit of a carbon-free society, where there are strong incentives to develop new and renewable energy sources.

Combining windows and solar cells increase their relevancy in many applications

He says that although solar panels play an essential role in renewable energy – since they provide a route to directly convert solar radiation into electricity – there are limitations to installing conventional panels, which are bulky, rigid, and opaque. He believes that combining windows and solar cells could increase their relevance in the built environment, agricultural sector, and modern consumer electronics.

Explaining about the luminescent solar concentrator (LSC) in his study, he states that it is a device used as a large-area solar radiation collector that converts and emits radiation. The emitted radiation is directed to photovoltaic cells located in the small side area of the device. According to him, a basic LSC consists of a transparent waveguide with an embedded luminescent material and a strategically placed photovoltaic cell on the edge.

Dr Erasmus continues, “The large area of the waveguide collects a portion of the solar radiation, while the luminescent material absorbs the energy and downshifts it to longer wavelengths. Internal reflection directs the emitted photons towards smaller areas on the sides where the photovoltaic cells are used to convert the concentrated light into electricity.”

In his view, creating a large and efficient LSC is a challenging endeavour that requires an in-depth study of multiple domains. “This includes developing and optimising the luminescent material, studying its behaviour and the characteristics of the waveguide, and finally adding these two components and developing, characterising, and simulating the hybrid device,” he remarks.

“While the current prototype we have developed delivers good results, it is still far from perfect and not commercially viable,” he says, stating that this study could, however, serve as a guide for future researchers interested in developing LCSs. Dr Erasmus believes the underlying science behind the results contributes to a general understanding of the materials, making this study valuable to other fields and contributing to the larger body of science. At the end of the study, he also makes some recommendations for future research in this field. 

Study a reflection of theoretical knowledge and a practical system

The public defence consisted of both an internal and an external defence. The internal defence took place in January at the UFS between Dr Erasmus and the examination committee. The external defence occurred at Ghent University and was also open to the broader public. Also present at this event in Belgium were colleagues from the UFS – Prof David Motaung, an examiner; Prof Koos Terblans, co-supervisor; and Prof Hendrik Swart, supervisor for the PhD thesis.

Dr Erasmus’ experience of the oral examination was that the examiners were primarily positive in their critique but also thorough in their questioning. According to him, some of their remarks pointed out that they were impressed with the meticulous planning, execution, and interpretation of the experimental results and that the researchers involved ensured that any parameter that might have influenced the device was maximised. “Moreover, they liked the fact that I went all the way from theoretical knowledge to a practical system. The examiners also noted that the study compares well with the current state-of-the-art research in the field,” adds Dr Erasmus.

He says that having the public defence in Belgium was a once-in-a-lifetime experience, allowing him to interact and deliberate directly with the examiners and communicate their findings and conclusions to the broader public. Dr Erasmus hopes that this will lead to stronger collaboration and better public sentiment toward spending funding for scientific projects.

For future steps, he states, the research group involved in the project plans to continue this research by further increasing the device's efficiency. “To this end, we have already developed another luminescent material that can address some of the challenges we encountered while developing the first prototype device. This forms part of the work that Johané Odendaal is doing in her master’s degree, of which I am a co-supervisor. We also plan to enlarge the scope of our research to consider the challenges that are currently hampering the next generation of photovoltaic cells and to find ways in which we could address these issues,” comments Dr Erasmus.

News Archive

UFS receives R13,7 Million for Research into Prehistoric Organisms
2007-03-27

Some of the guests attending the launch of the research contract are: Dr Siyabulela Ntutela (Deputy Director: Biotechnology at the Department of Science and Technology), Dr Godfrey Netswera (Manager of Thuthuka and the Support Programme at the National Research Foundation (NRF)), Dr Esta van Heerden (Platform Manager and lecturer at the Department of Microbial, Biochemical and Food Biotechnology at the UFS), Mr Butana Mboniswa (Chief Executive Officer of BioPAD), and Mr Vuyisele Phehani (Portfolio Manager for BioPAD).
Photo: Leonie Bolleurs

The University of the Free State (UFS) has been awarded a massive R13,7 million contract to conduct research into prehistoric micro-organisms which live under extreme conditions, for example in mineshafts.

This is one of the biggest research contracts awarded to the UFS in recent years.

The biotechnology research contract was awarded to the UFS by BioPAD, a South African biotechnology company that brokers partnerships between researchers, entrepreneurs, business, government and other stakeholders to promote innovation and create sustainable biotechnology businesses.

The project is endorsed by the Department of Science and Technology and the National Research Foundation (NRF), which contributes to the bursaries of the 17 postgraduate students on the programme.

The contract involves the establishment of a Platform for Metagenomics -  a technique which allows researchers to extract the DNA from microbes in their natural environment and investigate it in a laboratory. 

“Through this platform we will be able to understand deepmine microbial populations
and their potential application in the search for life in outer space.  It is most likely
that, if life were to be found on other planets in our solar system, it would probably
resemble that which existed millions of years ago on earth.  Apart from all this, these
organisms have unique properties one can exploit in biotechnological application for
South Africa and its community,” said Dr Esta van Heerden, platform manager and
lecturer at the UFS Department of Microbial, Biochemical and Food Biotechnology.
She is assisted by her collegues, Prof. Derek Litthauer and Dr Lizelle Piater.

“The platform aims to tap into the unique genetic material in South African mines
which will lead to the discovery of new genes and their products.  These new and unique products will find application in the medical field (anti-cancer, anti-bacterial en anti-viral cures), the industrial sector (nanotechnology, commercial washing agents and the food industry), environmental sector (pollution management, demolition of harmful metals and other toxic waste),” said Dr Van Heerden.

According to Dr Van Heerden, the Metagenomics Platforms stems from the Life in
Extreme Environments (LExEN) programme which was started in 1994 by Princeton
University in the United States of America (USA) in South African mines with grants
from among others the National Aeronautics and Space Administration (NASA) and
the National Science Foundation (NSF) in the USA.  Other international collaborators
on the project include Geosynec Consultants Inc. (USA), Oak Ridge National
Laboratory (USA), the University of Tennessee (USA) and in South Africa the
Universities of the Witwatersrand, North West and Limpopo and companies like BHP
Billiton, MINTEK and mining companies like Harmony, Gold Fields and AngloGold
Ashanti.

The research field laboratory of the Metagenomics Platform, which was situated in
Glen Harvey, was moved to the Main Campus of the UFS in Bloemfontein.  “In this
way the university has become the central hub for all research programmes.  We are
also the liaison between the LExEN programme and the various mining companies
involved,” said Dr Van Heerden.  The new laboratory was introduced during the
launch of the research contract.

“Our decision to commit BioPAD to this project stems from the company’s commitment to advance human capacity development to strengthen South Africa’s research infrastructure.  It is also part of our aim to create and protect intellectual property,” said Mr Butana Mboniswa, Chief Executive Officer of BioPAD.

Talking on behalf of the UFS senior management, Prof. Teuns Verschoor, Vice-Rector
of Academic Operations, said that the university shares the excitement to be part of
the exploration of unknown forms of life, the discovery of new genes and
their products and in applying newly gained knowledge to better understand our
universe.

Media release
Issued by: Lacea Loader
Assistant Director: Media Liaison 
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl@ufs.ac.za
27 March 2007

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept