Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 March 2024 | Story Leonie Bolleurs | Photo SUPPLIED
Dr Lucas Erasmus
Dr Lucas Erasmus, Junior Researcher in the Department of Physics, has just returned from Belgium where he had his public defence of a joint PhD with Ghent University, titled: Luminescent solar concentrators – where Sm2+ doped phosphors shine.

“I like taking what I have learned from literature and going to the laboratory to test it. Sometimes the results surprise me, leading to additional experiments or refining. This process could continue for several months and even years, with me slowly building the puzzle. And finally, one day, all the pieces come together, and everything becomes very clear to me as a physicist. And if I am lucky, I will have the privilege of knowing a secret about nature that nobody else has known up to this point. However, as an innovator, I am tasked with using this new knowledge to develop ways to manipulate nature to deliver a helpful device.”

These are the thoughts of Dr Lucas Erasmus, Junior Researcher in the Department of Physics at the University of the Free State (UFS), who has just returned from Ghent, Belgium, where he had his public defence of a joint PhD with Ghent University, titled: Luminescent solar concentrators – where Sm2+ doped phosphors shine.

The research project is part of a bilateral collaboration between the Department of Physics at the UFS and the Department of Solid State Sciences at Ghent University. In this study, the strengths, experience, and resources of both research groups – experienced in developing luminescent materials for various applications – are used to ensure a stronger final product. To meet the requirements stipulated in the cooperation agreement between the two institutions for the joint supervision and certification of Dr Erasmus’ doctoral studies, research was conducted both at the UFS and at Ghent University.

Dr Erasmus’ research is significant in the light of rising energy prices, energy scarcity, and the pursuit of a carbon-free society, where there are strong incentives to develop new and renewable energy sources.

Combining windows and solar cells increase their relevancy in many applications

He says that although solar panels play an essential role in renewable energy – since they provide a route to directly convert solar radiation into electricity – there are limitations to installing conventional panels, which are bulky, rigid, and opaque. He believes that combining windows and solar cells could increase their relevance in the built environment, agricultural sector, and modern consumer electronics.

Explaining about the luminescent solar concentrator (LSC) in his study, he states that it is a device used as a large-area solar radiation collector that converts and emits radiation. The emitted radiation is directed to photovoltaic cells located in the small side area of the device. According to him, a basic LSC consists of a transparent waveguide with an embedded luminescent material and a strategically placed photovoltaic cell on the edge.

Dr Erasmus continues, “The large area of the waveguide collects a portion of the solar radiation, while the luminescent material absorbs the energy and downshifts it to longer wavelengths. Internal reflection directs the emitted photons towards smaller areas on the sides where the photovoltaic cells are used to convert the concentrated light into electricity.”

In his view, creating a large and efficient LSC is a challenging endeavour that requires an in-depth study of multiple domains. “This includes developing and optimising the luminescent material, studying its behaviour and the characteristics of the waveguide, and finally adding these two components and developing, characterising, and simulating the hybrid device,” he remarks.

“While the current prototype we have developed delivers good results, it is still far from perfect and not commercially viable,” he says, stating that this study could, however, serve as a guide for future researchers interested in developing LCSs. Dr Erasmus believes the underlying science behind the results contributes to a general understanding of the materials, making this study valuable to other fields and contributing to the larger body of science. At the end of the study, he also makes some recommendations for future research in this field. 

Study a reflection of theoretical knowledge and a practical system

The public defence consisted of both an internal and an external defence. The internal defence took place in January at the UFS between Dr Erasmus and the examination committee. The external defence occurred at Ghent University and was also open to the broader public. Also present at this event in Belgium were colleagues from the UFS – Prof David Motaung, an examiner; Prof Koos Terblans, co-supervisor; and Prof Hendrik Swart, supervisor for the PhD thesis.

Dr Erasmus’ experience of the oral examination was that the examiners were primarily positive in their critique but also thorough in their questioning. According to him, some of their remarks pointed out that they were impressed with the meticulous planning, execution, and interpretation of the experimental results and that the researchers involved ensured that any parameter that might have influenced the device was maximised. “Moreover, they liked the fact that I went all the way from theoretical knowledge to a practical system. The examiners also noted that the study compares well with the current state-of-the-art research in the field,” adds Dr Erasmus.

He says that having the public defence in Belgium was a once-in-a-lifetime experience, allowing him to interact and deliberate directly with the examiners and communicate their findings and conclusions to the broader public. Dr Erasmus hopes that this will lead to stronger collaboration and better public sentiment toward spending funding for scientific projects.

For future steps, he states, the research group involved in the project plans to continue this research by further increasing the device's efficiency. “To this end, we have already developed another luminescent material that can address some of the challenges we encountered while developing the first prototype device. This forms part of the work that Johané Odendaal is doing in her master’s degree, of which I am a co-supervisor. We also plan to enlarge the scope of our research to consider the challenges that are currently hampering the next generation of photovoltaic cells and to find ways in which we could address these issues,” comments Dr Erasmus.

News Archive

Free State Receives R7 Million Grant from the Mellon Foundation for Arts Innovation
2015-11-30


Man in the Green Blanket, Lesiba Mabitsela.
Photo: Karla Benade

Bloemfontein will experience a flood of new, experimental art over the next four years as a result of R7 million that has been received to develop experimental art projects in central South Africa. The Andrew W. Mellon Foundation recently awarded the grant to the University of the Free State (UFS) for the Programme for Innovation in Artform Development (PIAD). Initiated jointly by the UFS and the Vrystaat Arts Festival in 2014, PIAD was established as a programme to promote the exploration of the arts to advance interdisciplinary research and to impact on human development.

The Andrew W. Mellon Foundation is a New York-based, non-profit organisation which endeavours to strengthen, promote, and, where necessary, defend the contributions of the humanities and the arts to human flourishing, and to the well-being of diverse and democratic societies.

“The Innovation in Artform Development initiative will provide an important contribution to the ways in which the university hopes to broaden and deepen research and dialogue about the humanities in South African society. Using the arts as a vehicle to engage communities around issues of social significance, makes for an exciting endeavour, and we are happy to have Mellon’s financial and partnership investment in this initiative,” said Prof Jonathan Jansen, Vice-Chancellor of the UFS.

“This substantial support from the Foundation will play a pivotal role in facilitating collaborations with national and international artists to explore new, innovative modes of artistic practice and creative production in South Africa,” said Angela de Jesus, UFS Art Curator and Co-Director of PIAD.

“A series of First Nations projects, arts/science research and artist residencies, arts laboratories for creative practitioners, the production of exciting new work for Bloemfontein, and critical debates/forums is expected over the next few years,” she added.

PIAD focuses on supporting cross-cultural, experimental art programmes that can assist South African society creatively. For this process, PIAD is engaging the skills and expertise of South Africa artists in collaboration with several international partners, who are recognised as global leaders in this field, to develop a mutually- beneficial programme of engagement.  

Innovation, technology, and new forms of art will be explored and international collaborations that have the potential to attract benefits for the creative industries in Bloemfontein and beyond will be introduced.

“The artistic landscape of the Free State - in fact the whole South Africa - will be forever changed because of this extraordinarily generous grant. Rarely does a regional community get a chance to lead innovation on a national scale, and also impact on experimental art internationally. We are in for an incredible artistic journey,” said Dr Ricardo Peach, Director of the Vrystaat Arts Festival and Co-Director of PIAD.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept