Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 March 2024 | Story Leonie Bolleurs | Photo SUPPLIED
Dr Lucas Erasmus
Dr Lucas Erasmus, Junior Researcher in the Department of Physics, has just returned from Belgium where he had his public defence of a joint PhD with Ghent University, titled: Luminescent solar concentrators – where Sm2+ doped phosphors shine.

“I like taking what I have learned from literature and going to the laboratory to test it. Sometimes the results surprise me, leading to additional experiments or refining. This process could continue for several months and even years, with me slowly building the puzzle. And finally, one day, all the pieces come together, and everything becomes very clear to me as a physicist. And if I am lucky, I will have the privilege of knowing a secret about nature that nobody else has known up to this point. However, as an innovator, I am tasked with using this new knowledge to develop ways to manipulate nature to deliver a helpful device.”

These are the thoughts of Dr Lucas Erasmus, Junior Researcher in the Department of Physics at the University of the Free State (UFS), who has just returned from Ghent, Belgium, where he had his public defence of a joint PhD with Ghent University, titled: Luminescent solar concentrators – where Sm2+ doped phosphors shine.

The research project is part of a bilateral collaboration between the Department of Physics at the UFS and the Department of Solid State Sciences at Ghent University. In this study, the strengths, experience, and resources of both research groups – experienced in developing luminescent materials for various applications – are used to ensure a stronger final product. To meet the requirements stipulated in the cooperation agreement between the two institutions for the joint supervision and certification of Dr Erasmus’ doctoral studies, research was conducted both at the UFS and at Ghent University.

Dr Erasmus’ research is significant in the light of rising energy prices, energy scarcity, and the pursuit of a carbon-free society, where there are strong incentives to develop new and renewable energy sources.

Combining windows and solar cells increase their relevancy in many applications

He says that although solar panels play an essential role in renewable energy – since they provide a route to directly convert solar radiation into electricity – there are limitations to installing conventional panels, which are bulky, rigid, and opaque. He believes that combining windows and solar cells could increase their relevance in the built environment, agricultural sector, and modern consumer electronics.

Explaining about the luminescent solar concentrator (LSC) in his study, he states that it is a device used as a large-area solar radiation collector that converts and emits radiation. The emitted radiation is directed to photovoltaic cells located in the small side area of the device. According to him, a basic LSC consists of a transparent waveguide with an embedded luminescent material and a strategically placed photovoltaic cell on the edge.

Dr Erasmus continues, “The large area of the waveguide collects a portion of the solar radiation, while the luminescent material absorbs the energy and downshifts it to longer wavelengths. Internal reflection directs the emitted photons towards smaller areas on the sides where the photovoltaic cells are used to convert the concentrated light into electricity.”

In his view, creating a large and efficient LSC is a challenging endeavour that requires an in-depth study of multiple domains. “This includes developing and optimising the luminescent material, studying its behaviour and the characteristics of the waveguide, and finally adding these two components and developing, characterising, and simulating the hybrid device,” he remarks.

“While the current prototype we have developed delivers good results, it is still far from perfect and not commercially viable,” he says, stating that this study could, however, serve as a guide for future researchers interested in developing LCSs. Dr Erasmus believes the underlying science behind the results contributes to a general understanding of the materials, making this study valuable to other fields and contributing to the larger body of science. At the end of the study, he also makes some recommendations for future research in this field. 

Study a reflection of theoretical knowledge and a practical system

The public defence consisted of both an internal and an external defence. The internal defence took place in January at the UFS between Dr Erasmus and the examination committee. The external defence occurred at Ghent University and was also open to the broader public. Also present at this event in Belgium were colleagues from the UFS – Prof David Motaung, an examiner; Prof Koos Terblans, co-supervisor; and Prof Hendrik Swart, supervisor for the PhD thesis.

Dr Erasmus’ experience of the oral examination was that the examiners were primarily positive in their critique but also thorough in their questioning. According to him, some of their remarks pointed out that they were impressed with the meticulous planning, execution, and interpretation of the experimental results and that the researchers involved ensured that any parameter that might have influenced the device was maximised. “Moreover, they liked the fact that I went all the way from theoretical knowledge to a practical system. The examiners also noted that the study compares well with the current state-of-the-art research in the field,” adds Dr Erasmus.

He says that having the public defence in Belgium was a once-in-a-lifetime experience, allowing him to interact and deliberate directly with the examiners and communicate their findings and conclusions to the broader public. Dr Erasmus hopes that this will lead to stronger collaboration and better public sentiment toward spending funding for scientific projects.

For future steps, he states, the research group involved in the project plans to continue this research by further increasing the device's efficiency. “To this end, we have already developed another luminescent material that can address some of the challenges we encountered while developing the first prototype device. This forms part of the work that Johané Odendaal is doing in her master’s degree, of which I am a co-supervisor. We also plan to enlarge the scope of our research to consider the challenges that are currently hampering the next generation of photovoltaic cells and to find ways in which we could address these issues,” comments Dr Erasmus.

News Archive

Service learning teaching strategy essential for the infusion of graduate attributes
2017-01-02

Description: Dr Pulane Pitso Tags: Dr Pulane Pitso 

Dr Pulane Pitso, Director: Institutional Performance
Monitoring within Performance Monitoring and Evaluation
Branch in the Department of the Premier, Free State
Provincial Government (FSPG).
Photo: Rulanzen Martin

“Public service delivery is not only about ‘government’s sector end products’, but is also fundamentally related to the ways in which the citizens can be best served at the point of client interface, as the primary beneficiaries.”

It is against this backdrop that Dr Pulane Pitso’s study explored the role of Higher Education Institutions (HEIs) in infusing the curriculum with graduate attributes for improved service delivery. The study is entitled: Community service learning as a transformative tool for infusing the university curriculum with graduate attributes for improved service delivery.
 
Citizens the central focus in public-service delivery
Although with the advent of democracy, the South African public service introduced the Batho Pele “people first” initiative which is one of the key transformation-oriented initiatives to ensure that citizens are the central focus in public service  delivery. An extant literature indicates that more work by the government still needs to be done in terms of the institutionalisation and implementation thereof.

Notwithstanding that public service is primarily responsible for addressing challenges related to poor service delivery, Dr Pitso moved from a premise that a multifaceted and collaborative approach, underpinned by a concerted effort by all relevant sectors, is more likely to contribute significantly towards improving service delivery. Specific focus was given to sectors primarily mandated to lay foundations through training and development such as HEIs, since the nature and quality of public service largely depends on the nature, quality and relevance of the system of education.

CSL a transformative teaching strategy
The basis for her thesis, emanated from the contention that public service delivery is a dynamic process which cultivates into a citizen-government relationship.

“It is this relationship that makes the implementation of the Batho Pele initiative crucial in ensuring that the social fabric and moral character of government is not compromised, thus the sustainability and facilitation of the emerged relationship,” Dr Pitso says.

The study focuses on the notion of community service learning (CSL) as an increasingly recognised transformative teaching strategy. It transcends lecture halls and utilises communities as educational spaces to provide practical exposure to real-life experiences to students on both learning and serving the communities.

Instilling graduate attributes in students
Dr Pitso’s thesis, which was predominately qualitative in nature, comprised two main stages. The first stage of the study focused on determining the current state of the public service in terms of the implementation of the Batho Pele principles. Whereas with the second stage, the focus was on determining the extent to which the graduate attributes are instilled in students by means of an exit-level CSL module at the UFS.

Dr Pitso’s thesis, which was awarded to her on 30 June 2016, is the product of five years of hard work, commitment and perseverance. She said it would not have been realised if it had not been for the leadership and mentorship of her promoter, Prof Mabel Erasmus, and co-promoter, Prof Victor Teise.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept