Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 March 2024 | Story Leonie Bolleurs | Photo SUPPLIED
Dr Lucas Erasmus
Dr Lucas Erasmus, Junior Researcher in the Department of Physics, has just returned from Belgium where he had his public defence of a joint PhD with Ghent University, titled: Luminescent solar concentrators – where Sm2+ doped phosphors shine.

“I like taking what I have learned from literature and going to the laboratory to test it. Sometimes the results surprise me, leading to additional experiments or refining. This process could continue for several months and even years, with me slowly building the puzzle. And finally, one day, all the pieces come together, and everything becomes very clear to me as a physicist. And if I am lucky, I will have the privilege of knowing a secret about nature that nobody else has known up to this point. However, as an innovator, I am tasked with using this new knowledge to develop ways to manipulate nature to deliver a helpful device.”

These are the thoughts of Dr Lucas Erasmus, Junior Researcher in the Department of Physics at the University of the Free State (UFS), who has just returned from Ghent, Belgium, where he had his public defence of a joint PhD with Ghent University, titled: Luminescent solar concentrators – where Sm2+ doped phosphors shine.

The research project is part of a bilateral collaboration between the Department of Physics at the UFS and the Department of Solid State Sciences at Ghent University. In this study, the strengths, experience, and resources of both research groups – experienced in developing luminescent materials for various applications – are used to ensure a stronger final product. To meet the requirements stipulated in the cooperation agreement between the two institutions for the joint supervision and certification of Dr Erasmus’ doctoral studies, research was conducted both at the UFS and at Ghent University.

Dr Erasmus’ research is significant in the light of rising energy prices, energy scarcity, and the pursuit of a carbon-free society, where there are strong incentives to develop new and renewable energy sources.

Combining windows and solar cells increase their relevancy in many applications

He says that although solar panels play an essential role in renewable energy – since they provide a route to directly convert solar radiation into electricity – there are limitations to installing conventional panels, which are bulky, rigid, and opaque. He believes that combining windows and solar cells could increase their relevance in the built environment, agricultural sector, and modern consumer electronics.

Explaining about the luminescent solar concentrator (LSC) in his study, he states that it is a device used as a large-area solar radiation collector that converts and emits radiation. The emitted radiation is directed to photovoltaic cells located in the small side area of the device. According to him, a basic LSC consists of a transparent waveguide with an embedded luminescent material and a strategically placed photovoltaic cell on the edge.

Dr Erasmus continues, “The large area of the waveguide collects a portion of the solar radiation, while the luminescent material absorbs the energy and downshifts it to longer wavelengths. Internal reflection directs the emitted photons towards smaller areas on the sides where the photovoltaic cells are used to convert the concentrated light into electricity.”

In his view, creating a large and efficient LSC is a challenging endeavour that requires an in-depth study of multiple domains. “This includes developing and optimising the luminescent material, studying its behaviour and the characteristics of the waveguide, and finally adding these two components and developing, characterising, and simulating the hybrid device,” he remarks.

“While the current prototype we have developed delivers good results, it is still far from perfect and not commercially viable,” he says, stating that this study could, however, serve as a guide for future researchers interested in developing LCSs. Dr Erasmus believes the underlying science behind the results contributes to a general understanding of the materials, making this study valuable to other fields and contributing to the larger body of science. At the end of the study, he also makes some recommendations for future research in this field. 

Study a reflection of theoretical knowledge and a practical system

The public defence consisted of both an internal and an external defence. The internal defence took place in January at the UFS between Dr Erasmus and the examination committee. The external defence occurred at Ghent University and was also open to the broader public. Also present at this event in Belgium were colleagues from the UFS – Prof David Motaung, an examiner; Prof Koos Terblans, co-supervisor; and Prof Hendrik Swart, supervisor for the PhD thesis.

Dr Erasmus’ experience of the oral examination was that the examiners were primarily positive in their critique but also thorough in their questioning. According to him, some of their remarks pointed out that they were impressed with the meticulous planning, execution, and interpretation of the experimental results and that the researchers involved ensured that any parameter that might have influenced the device was maximised. “Moreover, they liked the fact that I went all the way from theoretical knowledge to a practical system. The examiners also noted that the study compares well with the current state-of-the-art research in the field,” adds Dr Erasmus.

He says that having the public defence in Belgium was a once-in-a-lifetime experience, allowing him to interact and deliberate directly with the examiners and communicate their findings and conclusions to the broader public. Dr Erasmus hopes that this will lead to stronger collaboration and better public sentiment toward spending funding for scientific projects.

For future steps, he states, the research group involved in the project plans to continue this research by further increasing the device's efficiency. “To this end, we have already developed another luminescent material that can address some of the challenges we encountered while developing the first prototype device. This forms part of the work that Johané Odendaal is doing in her master’s degree, of which I am a co-supervisor. We also plan to enlarge the scope of our research to consider the challenges that are currently hampering the next generation of photovoltaic cells and to find ways in which we could address these issues,” comments Dr Erasmus.

News Archive

Power shortage: Measures to be implemented immediately
2008-01-31

1. In order to avoid the further implementation of power sharing, electricity companies countrywide are requiring, in addition to measures announced for domestic consumers, that major power consumers save a certain percentage of power.

2. Die UFS is one of the 100 largest clients of Centlec, the local electricity distribution company. During a meeting last Thursday evening with the 100 largest clients, it was indicated that the UFS had to deliver a saving of 10%. The details are as follows:

  • Provision is made to a certain extent for an increase in electricity consumption. The calculation is done as follows: maximum consumption for 2007+6%-10%.
  • This entails a saving during peak times, as well as a saving regarding the total number of units consumed.
  • The saving is calculated on a monthly basis.
  • Saving measures must be implemented immediately (from 7 March). If electricity-saving goals are not attained, power sharing will be resumed from 10 March.

3. The UFS has been controlling its peak demand by means of an energy control system for many years. The geysers of residences and certain central air-conditioning systems were linked to the control system in order to shift energy consumption to non-peak times.

4. In order to attain the goal of 10%, it is necessary to implement further energy control systems and additional measures – which requires time and money. Attention will have to be given, inter alia, to the following:

  • The 1000+ portable air-conditioning units on the campus (huge power guzzlers) must be connected to energy control appliances and systems.
  • All the filament bulbs must be replaced.

7. The UFS will be conducting high-level talks with Centlec later this week with a view to:

  • conveying the unique needs of the UFS in detail;
  • stating the impact of building and refurbishing projects that are currently in the implementation and planning phases;
  • requesting understanding for the fact that the UFS does not have the capacity to immediately deliver the 10% saving.
     

It is evident from discussions thus far that Centlec is sympathetic and wants to help, but also that immediate action and co-operation are expected from the UFS. During the meeting, the UFS must also report back on steps already taken (since 7 March) in this regard.

8. The installation of the emergency power units for the large lecture-hall complexes and a few other critical areas, which has already been approved, is continuing. About R3m is being spent on this. Additional emergency power needs reported to Physical Resources via line managers are currently being investigated with a view to obtaining a cost estimate and subsequently determining priorities in consultation with line managers.

It is recommended that:

a) All line managers, staff members and students be requested to give their full co-operation with regard to saving electricity in every possible way, and that current operational arrangements be amended if possible with a view to promoting power saving. 

Staff, students and other users of campus facilities be requested to see to it that lights and air conditioning (individual units) in unused areas are switched off.

b) The following measures drawn up in co-operation with electrical engineers come into effect immediately:

Arrangements to be made by Physical Resources staff:
(Additional capacity to be able to complete everything within a reasonable period of time will have to be found and funded. This aspect will be taken up with the line managers concerned):

  • The geysers of all office buildings will be switched off at the distribution board. Staff are requested to use a kettle for washing dishes, and are warned not to switch appliances on again themselves.
  • In all office buildings where 12V and 15W downlighters and uplighters remain switched on for decorative purposes and do not serve as primary illumination, the light switches will be disconnected.
  • Lighting in cloakrooms will be checked, and illumination levels will be reduced if possible.
  • All light armatures must be replaced by CFL types.
  • All lights on the grounds will be checked to ensure minimum power consumption.
  • The upper limit of all central cooling systems currently regulated via the energy control system must be set to 24 degrees.

Arrangements to be made by Kovsie Sport:

  • Sport activities requiring sports field illumination must be scheduled after 20:00 in the evening (the lights may not be on between 18:00 and 20:00.)
  • Sports field illumination must be managed so that such lights are not switched on unnecessarily.
     

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept