Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 May 2024 | Story Dr Nitha Ramnath | Photo right
UFS - Thought-Leader Webinar

2024 UFS Thought-Leader Webinar Series

PRESENTS

a webinar titled

2024 Elections: Promises, Perils, and Delivery: What the Future Holds After 29 May 2024?


The University of the Free State (UFS) is pleased to present its first webinar for the year, titled 2024 Elections: Promises, Perils, and Delivery: What the Future Holds After 29 May 2024? – which is part of the 2024 Thought-Leader Webinar Series. As a public higher-education institution in South Africa with a responsibility to contribute to public discourse, the university will be presenting the webinar as part of the UFS Thought-Leader Series, which is in its sixth consecutive year.  The aim of the webinar series is to discuss issues facing South Africa by engaging experts at the university and in South Africa.

 

Webinar presented on 23 May 2024

On 29 May 2024, South Africans will go to the polls. This election is considered by South Africans as significant and much needed since the end of apartheid in 1994. South Africa is plagued by record power cuts, poor service delivery, and high levels of unemployment, with drastic effects on businesses and the local economy. Coinciding with the celebration of 30 years of freedom and democracy, this seventh democratic election is a turning point for South Africa to determine the desired future for all South Africans.

Date:   Thursday 23 May 2024

Time: 12:30-14:00

RSVP:  Click to view document HERE no later than 22 May 2024.

Some of the topics discussed by leading experts in 2023 included, among others, Threats to South Africa’s stability and security challenges; The need for a global and regional plan / approach to respond to the consequences of the Russia-Ukraine war; and Student protest action, politics, and higher education.


Facilitator:

 

Prof Francis Petersen

Vice-Chancellor and Principal, UFS

 

Panellists:

Prof Bonang Mohale

Chancellor, UFS

 

Dr Ebrahim Harvey

Political writer and commentator

 

Bios of speakers:

Prof Bonang Mohale

Prof Bonang Mohale is the Chancellor of the University of the Free State, former President of Business Unity South Africa (BUSA), Professor of Practice in the Johannesburg Business School (JBS) College of Business and Economics, and Chairman of two listed entities – the Bidvest Group Limited and ArcelorMittal, as well as SBV Services and Swiss Re Corporate Solutions! He is a member of the Community of Chairpersons (CoC) of the World Economic Forum and author of two best-selling books, Lift As You Rise and Behold The Turtle! He has been included in the Reputation Poll International’s (RPI) 2023 list of the ‘100 Most Reputable Africans’. The selection criteria are integrity, reputation, transparency, visibility, and impact. He is the recipient of the 2023 ME-Vision Academy’s ‘Exclusive Recognition in Successful Leadership’ Award for consistently leading self successfully, consistently leading people successfully, successfully leading as a senior executive and CEO, successfully leading society in various impactful roles, and his contribution to mentoring and inspiring future successful leaders.

 

Dr Ebrahim Harvey

Dr Ebrahim Harvey is a political writer, analyst, commentator, former Cosatu trade unionist, and Mail & Guardian columnist. He is currently a News24 columnist. He also wrote the authorised biography of former president, Kgalema Motlanthe (2012), and The Great Pretenders: Race and Class under ANC Rule (2021), which won the 2022 SA Literary Award for Non-Fiction. He holds a master’s degree in Public and Development Management and a PhD degree in Sociology, both from the University of the Witwatersrand.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept