Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 May 2024 | Story Valentino Ndaba | Photo Supplied
Heaters
Embrace the warmth of safety: Stay cozy with approved quartz heaters such as the Goldair GHQ-100G, keeping our campus secure and snug.

As winter approaches, the University of the Free State (UFS) is expecting increased heater usage. The Department of University Estates is proactively addressing this surge in energy demand caused by colder weather to safeguard our campuses and help mitigate the risk of loadshedding, ensuring uninterrupted operations for our staff and students.

By addressing the surge in energy demand caused by colder weather and promoting energy-efficient practices, UFS aims to play its part in alleviating the strain on the power system and contributing to national efforts to mitigate loadshedding.

With South Africa enjoying a recent break from loadshedding, Nicolaas Esterhuysen, Director of Engineering Services, stresses the importance of wise electricity usage to prevent outages and maintain safety. “During this uninterrupted power supply, it’s crucial to be mindful of our electricity usage, especially regarding heating in winter,” Esterhuysen emphasises. “By adopting energy-efficient practices, we contribute to the university’s energy-efficiency goals and create a safer environment."

In line with promoting energy efficiency, the Office for Occupational Health and Safety (OHS) is rolling out a comprehensive campaign to remove unauthorised heaters, minimising fire risks in residential and office areas.

Thato Block, Deputy Director of OHS, explains: “With the structural fire season approaching, UFS is prioritising campus safety. As colder weather looms, heaters and other warming devices will be in high demand, prompting preemptive action. OHS and the Electrical workshop will commence removing unauthorised heaters from residences and offices starting May 2024.”

Guidelines for heater usage

To ensure compliance and safety, UFS has established specific guidelines for electrical heater usage on its premises. The Standard Operating Procedure (SOP) outlines permissible and prohibited heater types, along with safety measures.

According to the SOP, only quartz heaters meeting specific criteria, such as the Goldair GHQ-100G model, are permitted on campus. These heaters are designated for offices without air conditioning, prioritising energy efficiency and safety. Furthermore, heaters are not permitted in residences due to the presence of centralised heating systems.

Prohibited models like bar, fan and oil heaters are strictly banned due to their high energy consumption and fire risks. Any unauthorised heaters found on campus will be confiscated to prevent electrical circuit overload and ensure emergency power system reliability.

In addition to regulating heater types, the UFS has implemented a stringent purchasing procedure overseen by the Department of University Estates Electrical Engineers. Approval is required before requisitioning heaters, with only quartz heaters meeting purchase criteria. This proactive approach aims to effectively manage electricity consumption, especially during peak demand periods in winter.

Safety precautions

The UFS community is reminded to exercise caution when using heaters, including maintaining a clutter-free environment around the device, and avoiding covering it. It’s also important to ensure adequate distance between the heater and flammable materials, switch off heaters when unattended, and disconnect them from power sources during prolonged periods of non-use.

Commitment to campus safety

The UFS remains committed to prioritising the safety and well-being of its community. Through proactive measures and fostering safety awareness, the university aims to create a secure environment conducive to teaching and learning throughout the year.

News Archive

#Women'sMonth: Save the children
2017-08-10

Description: Trudi O'Neill Tags: : rotaviruses, young children, Dr Trudi O’Neill, Department of Microbial, Biochemical and Food Biotechnology, vaccine 

Dr Trudi O’Neill, Senior lecturer in the Department of
Microbial, Biochemical and Food Biotechnology.
Photo: Anja Aucamp

Dr Trudi O’Neill, Senior lecturer in the Department of Microbial, Biochemical and Food Biotechnology, is conducting research on rotavirus vaccines.

Dr O’Neill was inspired to conduct research on this issue through her fascination with the virus. “The biology of rotaviruses, especially the genome structure and the virus’ interaction with the host, is fascinating.”

“In fact, it is estimated that, globally, ALL children will be infected with rotavirus before the age of five, irrespective of their socio-economic standing. However, infants and young children in poor countries are more vulnerable due to inadequate healthcare. The WHO estimates that approximately 215 000 deaths occur each year. This roughly equates to eight Airbus A380 planes, the largest commercial carrier with a capacity of approximately 500 seats, filled with only children under the age of five, crashing each week of every year.”

Alternative to expensive medicines 
“Currently, there are two vaccines that have been licensed for global use. However, these vaccines are expensive and poor countries, where the need is the greatest, are struggling to introduce them sustainably. It is therefore appealing to study rotaviruses, as it is scientifically challenging, but could at the same time have an impact on child health,” Dr O’Neill said.

The main focus of Dr O’Neill’s research is to develop a more affordable vaccine that can promote child vaccination in countries/areas that cannot afford the current vaccines.

All about a different approach 

When asked about the most profound finding of her research, Dr O’Neill responded: “It is not so much a finding, but rather the approach. My rotavirus research group is making use of yeast as vehicle to produce a sub-unit vaccine. These microbes are attractive, as they are relatively easy to manipulate and cheap to cultivate. Downstream production costs can therefore be reduced. The system we use was developed by my colleagues, Profs Koos Albertyn and Martie Smit, and allows for the potential use of any yeast. This enables us to screen a vast number of yeasts in order to identify the best yeast producer.”

Vaccination recently acquired a bad name in the media for its adverse side effects. As researcher, Dr O’Neill has this to say: “Vaccines save lives. By vaccinating your child, you don’t just protect your own child from a potentially deadly infection, but also other children in your community that might be too young to be vaccinated or have pre-existing health problems that prevents vaccination.” 

A future without rotavirus vaccination?

Dr O’Neill believes a future without rotavirus vaccination will be a major step backwards, as the impact of rotavirus vaccines has been profound. “Studies in Mexico and Malawi actually show a reduction in deaths. A colleague in Mozambique has commented on the empty hospital beds that amazed both clinicians and scientists only one year after the introduction of the vaccine in that country. Although many parents, mostly in developed countries, don’t have to fear dehydrating diarrhoea and potential hospitalisation of their babies due to rotavirus infection anymore, such an infection could still be a death sentence in countries that have not been able to introduce the vaccine in their national vaccination programmes,” she said. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept