Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 May 2024 | Story Valentino Ndaba | Photo Supplied
Heaters
Embrace the warmth of safety: Stay cozy with approved quartz heaters such as the Goldair GHQ-100G, keeping our campus secure and snug.

As winter approaches, the University of the Free State (UFS) is expecting increased heater usage. The Department of University Estates is proactively addressing this surge in energy demand caused by colder weather to safeguard our campuses and help mitigate the risk of loadshedding, ensuring uninterrupted operations for our staff and students.

By addressing the surge in energy demand caused by colder weather and promoting energy-efficient practices, UFS aims to play its part in alleviating the strain on the power system and contributing to national efforts to mitigate loadshedding.

With South Africa enjoying a recent break from loadshedding, Nicolaas Esterhuysen, Director of Engineering Services, stresses the importance of wise electricity usage to prevent outages and maintain safety. “During this uninterrupted power supply, it’s crucial to be mindful of our electricity usage, especially regarding heating in winter,” Esterhuysen emphasises. “By adopting energy-efficient practices, we contribute to the university’s energy-efficiency goals and create a safer environment."

In line with promoting energy efficiency, the Office for Occupational Health and Safety (OHS) is rolling out a comprehensive campaign to remove unauthorised heaters, minimising fire risks in residential and office areas.

Thato Block, Deputy Director of OHS, explains: “With the structural fire season approaching, UFS is prioritising campus safety. As colder weather looms, heaters and other warming devices will be in high demand, prompting preemptive action. OHS and the Electrical workshop will commence removing unauthorised heaters from residences and offices starting May 2024.”

Guidelines for heater usage

To ensure compliance and safety, UFS has established specific guidelines for electrical heater usage on its premises. The Standard Operating Procedure (SOP) outlines permissible and prohibited heater types, along with safety measures.

According to the SOP, only quartz heaters meeting specific criteria, such as the Goldair GHQ-100G model, are permitted on campus. These heaters are designated for offices without air conditioning, prioritising energy efficiency and safety. Furthermore, heaters are not permitted in residences due to the presence of centralised heating systems.

Prohibited models like bar, fan and oil heaters are strictly banned due to their high energy consumption and fire risks. Any unauthorised heaters found on campus will be confiscated to prevent electrical circuit overload and ensure emergency power system reliability.

In addition to regulating heater types, the UFS has implemented a stringent purchasing procedure overseen by the Department of University Estates Electrical Engineers. Approval is required before requisitioning heaters, with only quartz heaters meeting purchase criteria. This proactive approach aims to effectively manage electricity consumption, especially during peak demand periods in winter.

Safety precautions

The UFS community is reminded to exercise caution when using heaters, including maintaining a clutter-free environment around the device, and avoiding covering it. It’s also important to ensure adequate distance between the heater and flammable materials, switch off heaters when unattended, and disconnect them from power sources during prolonged periods of non-use.

Commitment to campus safety

The UFS remains committed to prioritising the safety and well-being of its community. Through proactive measures and fostering safety awareness, the university aims to create a secure environment conducive to teaching and learning throughout the year.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept