Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 May 2024 | Story Edzani Nephalela | Photo Charl Devenish
Louzanne Coetzee
During the Faculty of Education ceremony, Louzanne Coetzee, a blind UFS alumna and speaker, shared her remarkable journey. From her days as a high school learner to becoming a student, she highlighted her challenges and how she overcame them.

The April graduations at the University of the Free State (UFS) were a remarkable celebration of diversity and inclusivity, with 44 graduates with learning difficulties, visual, mobility, or hearing impairments honoured for their achievements.

Despite facing unique challenges throughout their academic journeys, these resilient students triumphed over adversity to earn their degrees, inspiring their peers and educators alike – all with the assistance of the Centre for Universal Access and Disability Support (CUADS) within the Division of Student Affairs.

Words of advice from the recent graduates

Nkosingiphile Nyanale, who is blind, recently graduated with a Bachelor of Laws (LLB) degree. He emphasised the importance of mutual understanding between students and educators as a way of helping students with disabilities to overcome the extra hurdles they face. “One of the most challenging parts of my journey was reaching a common understanding with some facilitators on how I could be reasonably accommodated in class,” Nyanale said. “Some lecturers would deny themselves the opportunity to understand the challenges of students with visual impairments and viewed my requests as a way of seeking an easy pass. So, peers and lecturers understanding various impairments helped shape my journey.

Sthembiso Dlamini, a BSc Mathematics and Mathematical Statistics graduate who lives with dysgraphia, a condition that creates challenges related to handwriting, spelling, and organising thoughts on paper, said, “In my third year, I struggled to focus during high-stress exams. I willingly sacrificed much of my leisure time to tackle this obstacle head-on. I committed myself to honing my learning methods and enhancing my time-management abilities.” 

Relebohile Moloi, a nursing graduate, thanked CUADS for its help, and said greater awareness of the centre and its services could help more students. “They should assess students regularly for impairments, because sometimes people don’t know they have an impairment. CUADS should visit each faculty to give information on who they are and what they offer.”

The speaker

Louzanne Coetzee, a blind UFS alumna, shared her story during the last graduation session of the season on 20 April. “After matriculating at the Pioneer School in Worcester [Western Cape], where it was a protected environment, I did not know what to expect from the UFS. However, the UFS gave me a conducive environment by allowing my guide dog, Isabel, into the residences. I was the first person to be allowed such.” [Listen to her full speech here.]

Inclusive environment

Martie Miranda, Deputy Director at CUADS, said she’s proud of the graduates, as they embody the UFS’s dedication to an inclusive environment that caters to all its students, in line with the university’s Vision 130, which aims to foster academic excellence in a diverse and equitable environment. “In celebrating our graduates, we honour not just their achievements but the enduring commitment of CUADS staff and the university to foster an inclusive environment where every student's journey is valued and supported."

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept