Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 May 2024 | Story Precious Shamase | Photo Sonia Small
Humanities graduate
UFS Humanities graduate, ready to make a mark in the world.

The Faculty of The Humanities at the University of the Free State (UFS), in line with the goals of Vision 130, hosted a dynamic career webinar on Thursday 9 May. This event, organised by the Department of Communication Science, offered invaluable guidance and inspiration to students pursuing Communication Science degrees as their future career path.

The webinar featured a lineup of successful alumni who shared their diverse career paths within the ever-evolving communication landscape. Students gained practical insights from these experienced professionals, fostering a clearer understanding of the vast opportunities available to them. A particular highlight of the event was a presentation by Dr Phumzile Mmope, whose powerful and motivational graduation speech continues to resonate with many. Dr Mmope, a renowned expert in leadership communication, generously volunteered her time to address the students. This act embodied the spirit of mentorship and community that Vision 130 seeks to cultivate.

Beyond offering career guidance, the webinar served as a powerful symbol of the UFS' dedication to excellence and societal impact, as outlined in Vision 130. By connecting current students with accomplished alumni and promoting a culture of volunteerism, the Faculty of The Humanities empowers graduates to become well-rounded professionals equipped to make a significant difference in the world and contribute meaningfully to society.

A glimpse into the future of communication

The webinar not only provided practical career advice, but also offered a glimpse into the future of communication. Alumni speakers discussed emerging trends and the evolving skillsets required for success in the field. Students gained a deeper understanding of how their communication degree can be leveraged in new and exciting ways, preparing them to thrive in this dynamic and ever-changing landscape.

A network of support

The webinar fostered a sense of community and support among communication students. By connecting them with successful alumni, the event showcased the diverse career possibilities that await graduates. Additionally, the opportunity to learn from experienced professionals provided valuable insights and inspiration, empowering students to navigate their career paths with confidence.

Vision 130: building a brighter future

This career webinar exemplifies the core principles of Vision 130. By prioritising student success, fostering mentorship, and promoting community engagement, the Faculty of The Humanities equips graduates with the knowledge, skills, and connections necessary to become impactful leaders in the field of communication.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept