Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 May 2024 | Story Anthony Mthembu | Photo Sanchay Kalicharan
EMS research symposium 2024
Pictured at the research symposium from left to right: Cornelle Scheltema-Van Wyk, Deputy Director at the Library and Information Services at UFS; Prof Lochner Marais, Professor at the Centre for Development Support at UFS; Prof Brownhilder Neneh, Vice-Dean: Research, Engagement and Internationalisation in the EMS faculty at UFS; Prof Nicolene Barkhuizen, Director of the Business School at UFS; Prof Betty Mubangizi, Professor from the University of Kwa-Zulu Natal; and Prof Phillipe Burger, Dean of the EMS faculty at UFS.

The Faculty of Economic and Management Sciences (EMS) at the University of the Free State (UFS) recently hosted a transformative research career development symposium on 24 April 2024 and 3 May 2024 at the UFS Business School, on the Bloemfontein Campus. Themed “Building the Next Generation of Researchers and Academics: developing a Body of Work within a Niche Area and Publishing in Quality Journals,” the symposium provided a pivotal platform for scholarly growth and strategic planning.

In his opening address, Prof Philippe Burger, the Dean of the EMS faculty, underscored the significance of the event, stating, “We need to be scholars who can be contacted from outside and be ambitious to be known for something; this symposium would give our staff that opportunity.”

Symposium highlights

Prof Brownhilder Neneh, Vice-Dean of Research, Engagement and Internationalisation in the EMS faculty, elucidated the symposium’s objectives, highlighting its role in fostering career development, equipping lecturers with practical insights, and fostering proactive career management. Distinguished guests from institutions nationwide graced the symposium with their expertise.

The first session, tailored for the School of Accountancy, featured luminaries in the accounting field such as Prof Elmar Venter from the University of Pretoria (UP) and Professor Belinda Le Clerq from the University of South Africa (UNISA). The subsequent session catered to lecturers and senior lecturers across the faculty, featuring presentations from esteemed academics like Prof Mercy Mpinganjira from the University of Johannesburg (UJ), Prof Sebastian (Ian) Rothmann from the North-West University (NWU), and Prof Betty Mubangizi from the University of KwaZulu Natal (UKZN). Internal speakers, including Prof Burger, Prof Lochner Marais from the Centre for Development Support (CDS) at the UFS, and Prof Nicolene Barkhuizen, Director of the Business School at the UFS, also shared insights.

Symposium value and alignment with Vision 130

Prof Neneh stressed the symposium’s alignment with Vision130. She said, ‘’Hosting this symposium demonstrates the faculty’s commitment to nurturing a research-led faculty that not only addresses local and regional problems but aligns with international standards. Prof Neneh noted that the engagement offered an invaluable opportunity for academic staff to deepen their understanding of research niche areas, the significance of publishing in high-impact journals, and the cultivation of sustainable research networks.

Throughout the symposium, presenters covered a diverse array of topics, including identifying and refining niche research areas, best practices for conducting high-impact research, overcoming publishing challenges, and strategies for enhancing visibility and citation impact.  

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept