Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 May 2024 | Story Anthony Mthembu | Photo Sanchay Kalicharan
EMS research symposium 2024
Pictured at the research symposium from left to right: Cornelle Scheltema-Van Wyk, Deputy Director at the Library and Information Services at UFS; Prof Lochner Marais, Professor at the Centre for Development Support at UFS; Prof Brownhilder Neneh, Vice-Dean: Research, Engagement and Internationalisation in the EMS faculty at UFS; Prof Nicolene Barkhuizen, Director of the Business School at UFS; Prof Betty Mubangizi, Professor from the University of Kwa-Zulu Natal; and Prof Phillipe Burger, Dean of the EMS faculty at UFS.

The Faculty of Economic and Management Sciences (EMS) at the University of the Free State (UFS) recently hosted a transformative research career development symposium on 24 April 2024 and 3 May 2024 at the UFS Business School, on the Bloemfontein Campus. Themed “Building the Next Generation of Researchers and Academics: developing a Body of Work within a Niche Area and Publishing in Quality Journals,” the symposium provided a pivotal platform for scholarly growth and strategic planning.

In his opening address, Prof Philippe Burger, the Dean of the EMS faculty, underscored the significance of the event, stating, “We need to be scholars who can be contacted from outside and be ambitious to be known for something; this symposium would give our staff that opportunity.”

Symposium highlights

Prof Brownhilder Neneh, Vice-Dean of Research, Engagement and Internationalisation in the EMS faculty, elucidated the symposium’s objectives, highlighting its role in fostering career development, equipping lecturers with practical insights, and fostering proactive career management. Distinguished guests from institutions nationwide graced the symposium with their expertise.

The first session, tailored for the School of Accountancy, featured luminaries in the accounting field such as Prof Elmar Venter from the University of Pretoria (UP) and Professor Belinda Le Clerq from the University of South Africa (UNISA). The subsequent session catered to lecturers and senior lecturers across the faculty, featuring presentations from esteemed academics like Prof Mercy Mpinganjira from the University of Johannesburg (UJ), Prof Sebastian (Ian) Rothmann from the North-West University (NWU), and Prof Betty Mubangizi from the University of KwaZulu Natal (UKZN). Internal speakers, including Prof Burger, Prof Lochner Marais from the Centre for Development Support (CDS) at the UFS, and Prof Nicolene Barkhuizen, Director of the Business School at the UFS, also shared insights.

Symposium value and alignment with Vision 130

Prof Neneh stressed the symposium’s alignment with Vision130. She said, ‘’Hosting this symposium demonstrates the faculty’s commitment to nurturing a research-led faculty that not only addresses local and regional problems but aligns with international standards. Prof Neneh noted that the engagement offered an invaluable opportunity for academic staff to deepen their understanding of research niche areas, the significance of publishing in high-impact journals, and the cultivation of sustainable research networks.

Throughout the symposium, presenters covered a diverse array of topics, including identifying and refining niche research areas, best practices for conducting high-impact research, overcoming publishing challenges, and strategies for enhancing visibility and citation impact.  

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept