Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 May 2024 | Story Leonie Bolleurs | Photo Supplied
Inaugural
At the inaugural lecture of Prof Dirk Opperman were, from the left: Prof Opperman, Prof Vasu Reddy, Prof Koos Albertyn, Head of the Department of Microbiology and Biochemistry, and Prof Paul Oberholster, Dean of the Faculty of Natural and Agricultural Sciences.

Prof Dirk Opperman, a distinguished biochemist in the Department of Microbiology and Biochemistry, recently (21 May 2024) delivered his inaugural lecture on the Bloemfontein Campus of the University of the Free State (UFS).

The title of his lecture was: Exploring, Exploiting, and Evolving Life at the Atomic Level.

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation at the UFS, welcomed guests, stating, "An inaugural lecture is a major milestone, celebrating a life’s work that culminates in the title of professor. It marks an important chapter in an academic career, with much more to be achieved in the journey of producing important knowledge.”

He believes that an event such as this highlights the university’s pride in the achievements of its academic staff and aligns with Vision 130. “The UFS is proud to host such lectures, as they are significant moments to reveal and showcase the value of excellence in our knowledge pool in research, teaching, and innovation. As a university, we strive to make a difference through groundbreaking work, particularly in addressing society's challenges,” said Prof Reddy, emphasising that this topic truly speaks to the university’s commitment to impactful work in the hard sciences.

Deciphering the unknown

The topic of the lecture captures the essence of Prof Opperman’s research. He explains that ‘exploring’ refers to the determination of the three-dimensional structures of proteins and enzymes. ‘Exploiting’ involves the use of these enzymes to convert substrates into products of value, and ‘evolving’ pertains to mutating the DNA to change the protein, giving it different functions, activities, selectivity, or specificities.

In his lecture, he remarked that if we know the structures of these proteins and enzymes, we can explore what to do with them and how to change them. According to him, there are the unknown knowns, the unknown unknowns, and the known unknowns. “We may know of specific activities and reactions by microorganisms, but we don’t know which enzyme is responsible; similarly, we can know the reactivity of an enzyme, but not necessarily their true physiological functions. I am trying to figure out all these unknowns,” he said.

In his lecture, he also raised the question of whether AI could replace experimental determination of protein structures. "No, not yet; it is only predictions," he believes, commenting that navigating the unknown unknowns is a dangerous place in science.

Establishing the field of structural biology

Prof Opperman, born and raised in the Free State, completed his undergraduate studies at the UFS. Later, in 2008, he obtained his PhD in Biochemistry from the same university. Following his doctoral studies, he conducted postdoctoral research on directed evolution under the guidance of Prof Manfred T Reetz at the Max Planck Institute for Coal Research in Germany, one of the world’s top institutions.

In 2010, he was appointed to the Department of Microbiology and Biochemistry at the UFS, where he has since established the field of structural biology, setting up the infrastructure essential for the advancement thereof. This includes equipment, techniques, and methods for determining the three-dimensional structure of proteins. “It is done using protein crystallisation and then X-ray diffraction,” he explains. Most of these X-ray diffraction experiments are then performed at particle accelerators called synchrotrons, such as Diamond Light Source (UK), which can produce intense X-rays.

His current research explores the interface of evolutionary and structure-function relationships of biocatalysts, with a particular focus on their application in green chemistry. Prof Opperman says that understanding both the structure and the function of an enzyme allows one to manipulate it to perform other functions.

Contributing to the broader goals of sustainable development

One of the projects he is working on highlights the potential for sustainable practices in waste management. Prof Opperman is currently part of a European Research Area Network Cofund partnership on Food Systems and Climate (FOSC), which focuses on developing biocatalysts for upcycling waste. An aspect of this work involves studying enzymes that degrade feathers, thereby converting feather waste into useful products such as fertiliser.

Regarding the contribution of his research to the broader goals of sustainable development and environmental protection, he says that enzymes are the base for biotechnology and the bioeconomy. “They can be sustainably produced, the reactions are environmentally friendly, and the resulting products can be classified as natural. There’s no need to use sources that are not sustainable to extract some of these molecules from,” he explains.

His significant contributions to the field are reflected in more than 50 authored and co-authored papers, some of which are published in prestigious journals such as Science, Nature Communications, and Angewandte Chemie. As an NRF B-rated researcher, his work has received funding from various local and international organisations, including industries such as Sasol and the Global Challenges Research Fund.

News Archive

UFS presents sport concussion programme for schools
2008-11-14

The Sports Medicine Clinic at the University of the Free State (UFS) will present a sports concussion programme for schools in the Free State.

“The Pharos Schools Concussion Programme makes the latest methods and technology in concussion management available to learners who play contact sport,” says Dr Louis Holtzhausen, Programme Director of Sports Medicine at the UFS.

The great risk of concussion is that there is an uncertainty about when a player can return to a sport with safety and with the minimum complications in the brain. This programme fills that gap to a large extent.

“By using this programme, no player who suffers concussion will return to play before it is medically safe to do so. The programme also educates players, parents, coaches and the medical fraternity on how to manage sports concussion,” says Dr Holtzhausen.

The programme has been designed for hockey, soccer, cricket, rugby and other contact and collision sports.

SA Rugby has used the programme for professional players for the last five years and advocates that all school rugby players should participate in the programme.

Several sports teams from schools in and around Bloemfontein as well as the University’s Shimla and Irawa rugby teams have already been tested. This will provide invaluable information in the management of possible head injuries.

“We can now give definite guidelines to players and coaches regarding the safe return of players to teams after such an injury. It takes a lot of the guesswork out of the management of concussion and provides peace of mind to coaches, parents and players regarding serious injuries,” says Dr Holtzhausen.

By enrolling in the concussion programme, learners and their parents are ensured of among others:

A baseline computer brain-function test before the start of the season.
Information on how to recognise and treat concussion, including a fieldside information card for the player’s team.
A free consultation and neurological examination by a sports physician after any suspected concussion.
As many brain-function tests and sports-physician consultations as necessary after any concussion, until complete recovery.
Referral to a network of specialists if necessary.

The Pharos Programme uses a cognitive function evaluation called Cogsport. This is a neurophysiological test that measures brain function before the season starts. In this way, a baseline standard is established and, should concussion occur during the season, the extent of it can be measured according to the baseline and rehabilitation.

“Once we have the baseline values, the concussed player’s return to those levels must be monitored. He/she can return to light exercise in the meantime and semi- and full-contact can be introduced at appropriate times,” says Dr Holtzhausen.

The cost of enrolment is R200 per learner, regardless of the number of concussions suffered or sports physician consultations received. “By enrolling in this programme, parents will ensure that their child has the best chance of avoiding the potentially serious consequences of concussion, including learning disabilities, recurrent concussions, epileptic fits and even death,” says Dr Holtzhausen.

More information on the programme can be obtained from Ms Arina Otto at 051 401 2530.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
14 November 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept