Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 May 2024 | Story Leonie Bolleurs | Photo Supplied
Inaugural
At the inaugural lecture of Prof Dirk Opperman were, from the left: Prof Opperman, Prof Vasu Reddy, Prof Koos Albertyn, Head of the Department of Microbiology and Biochemistry, and Prof Paul Oberholster, Dean of the Faculty of Natural and Agricultural Sciences.

Prof Dirk Opperman, a distinguished biochemist in the Department of Microbiology and Biochemistry, recently (21 May 2024) delivered his inaugural lecture on the Bloemfontein Campus of the University of the Free State (UFS).

The title of his lecture was: Exploring, Exploiting, and Evolving Life at the Atomic Level.

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation at the UFS, welcomed guests, stating, "An inaugural lecture is a major milestone, celebrating a life’s work that culminates in the title of professor. It marks an important chapter in an academic career, with much more to be achieved in the journey of producing important knowledge.”

He believes that an event such as this highlights the university’s pride in the achievements of its academic staff and aligns with Vision 130. “The UFS is proud to host such lectures, as they are significant moments to reveal and showcase the value of excellence in our knowledge pool in research, teaching, and innovation. As a university, we strive to make a difference through groundbreaking work, particularly in addressing society's challenges,” said Prof Reddy, emphasising that this topic truly speaks to the university’s commitment to impactful work in the hard sciences.

Deciphering the unknown

The topic of the lecture captures the essence of Prof Opperman’s research. He explains that ‘exploring’ refers to the determination of the three-dimensional structures of proteins and enzymes. ‘Exploiting’ involves the use of these enzymes to convert substrates into products of value, and ‘evolving’ pertains to mutating the DNA to change the protein, giving it different functions, activities, selectivity, or specificities.

In his lecture, he remarked that if we know the structures of these proteins and enzymes, we can explore what to do with them and how to change them. According to him, there are the unknown knowns, the unknown unknowns, and the known unknowns. “We may know of specific activities and reactions by microorganisms, but we don’t know which enzyme is responsible; similarly, we can know the reactivity of an enzyme, but not necessarily their true physiological functions. I am trying to figure out all these unknowns,” he said.

In his lecture, he also raised the question of whether AI could replace experimental determination of protein structures. "No, not yet; it is only predictions," he believes, commenting that navigating the unknown unknowns is a dangerous place in science.

Establishing the field of structural biology

Prof Opperman, born and raised in the Free State, completed his undergraduate studies at the UFS. Later, in 2008, he obtained his PhD in Biochemistry from the same university. Following his doctoral studies, he conducted postdoctoral research on directed evolution under the guidance of Prof Manfred T Reetz at the Max Planck Institute for Coal Research in Germany, one of the world’s top institutions.

In 2010, he was appointed to the Department of Microbiology and Biochemistry at the UFS, where he has since established the field of structural biology, setting up the infrastructure essential for the advancement thereof. This includes equipment, techniques, and methods for determining the three-dimensional structure of proteins. “It is done using protein crystallisation and then X-ray diffraction,” he explains. Most of these X-ray diffraction experiments are then performed at particle accelerators called synchrotrons, such as Diamond Light Source (UK), which can produce intense X-rays.

His current research explores the interface of evolutionary and structure-function relationships of biocatalysts, with a particular focus on their application in green chemistry. Prof Opperman says that understanding both the structure and the function of an enzyme allows one to manipulate it to perform other functions.

Contributing to the broader goals of sustainable development

One of the projects he is working on highlights the potential for sustainable practices in waste management. Prof Opperman is currently part of a European Research Area Network Cofund partnership on Food Systems and Climate (FOSC), which focuses on developing biocatalysts for upcycling waste. An aspect of this work involves studying enzymes that degrade feathers, thereby converting feather waste into useful products such as fertiliser.

Regarding the contribution of his research to the broader goals of sustainable development and environmental protection, he says that enzymes are the base for biotechnology and the bioeconomy. “They can be sustainably produced, the reactions are environmentally friendly, and the resulting products can be classified as natural. There’s no need to use sources that are not sustainable to extract some of these molecules from,” he explains.

His significant contributions to the field are reflected in more than 50 authored and co-authored papers, some of which are published in prestigious journals such as Science, Nature Communications, and Angewandte Chemie. As an NRF B-rated researcher, his work has received funding from various local and international organisations, including industries such as Sasol and the Global Challenges Research Fund.

News Archive

Science school of excellence for Grade 11 learners launched
2009-04-21

 
At the launch of the Science School of Excellence were, from the left: Prof. Neil Heideman, Vice-Dean: Faculty of Natural and Agricultural Sciences at the UFS, Mr John Davids, General Manager, Volksblad, Ms Lorraine Botha, Chief Professional Officer, Centre for Education Development at the UFS, and Rev Kiepie Jaftha, Chief Director: Community Service at the UFS.
Photo: Dalene Harris

Science school of excellence for Grade 11 learners launched

The Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) has launched a project to give top Grade 11 learners an idea of what the faculty has to offer by giving them a ‘university-type’ experience.

The Science School of Excellence Project was launched last week during a function where the university’s schools support programmes were introduced to the management and members of staff.

The project is aimed at Grade 11 learners in the Free State who obtained an overall average of 80% in the 2008 Grade 10 final examinations. This includes a minimum score of 80% (Level 7) in Mathematics and a minimum score of 80% (Level 7) in Physical or Life Science during the same examination. It will be presented on the Main Campus in Bloemfontein from 6-9 July 2009. The closing date for applications is 8 May 2009.

“By presenting this project we want to stimulate learners’ interest in the natural and agricultural sciences, give them an idea of what we have to offer, raise their interest to come and study at the UFS and let them know that we cherish them as role models in their schools and as academic leaders of the future,” said Prof. Neil Heideman, Vice-Dean of the Faculty of Natural and Agricultural Sciences at the UFS.

According to Prof. Heideman the Science School of Excellence will take on the form of small lab and field projects which the learners will carry out under the supervision of staff and postgraduate students. An application fee of R50 per learner must be paid by the school and a maximum of 80 learners can be accommodated. The 80 learners will be selected on a first come, first served basis and a registration fee of R200 per learner has to be paid after they have received notice that they have been accepted. Letters in this regard have been sent to principals of secondary schools in the Free State. “We will also include 10 learners from disadvantaged rural schools, who will be fully sponsored,” said Prof. Heideman.

“Fourteen of our departments will be presenting programmes, during which learners will engage in challenging exercises that will be ‘out of school’ experiences involving laboratory experiments and research activities typical of our faculty,” said Prof. Heideman.

Five other schools support programmes of the UFS were also presented during last week’s launch function. They were the Itjhoriseng Project, which is a skills development course in Mathematics and Physical Sciences for teachers in the Further Education phase; the Science for the Future Project that aims to encourage more learners to enter into science-related studies and careers; the Qwaqwa School Support Programme that aims to improve the year-end results of Grade 12 learners and a project by the South African Foundation for Economic and Financial Education (SAFEFE) and the National Council of Economic Education (NCEE),which aims to improve the economic and financial literacy of teachers.

“The university’s role in the development of teachers and learners in various subject fields has increased tremendously over the past couple of years. Learners are our students of the future. As a university we must do as much as we can to equip them and their teachers with the necessary skills to better themselves,” said Rev. Kiepie Jaftha, Chief Director: Community Service at the UFS at the launch of the Science Schools for Excellence Project.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
20 April 2009

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept