Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 May 2024 | Story Leonie Bolleurs | Photo Supplied
Inaugural
At the inaugural lecture of Prof Dirk Opperman were, from the left: Prof Opperman, Prof Vasu Reddy, Prof Koos Albertyn, Head of the Department of Microbiology and Biochemistry, and Prof Paul Oberholster, Dean of the Faculty of Natural and Agricultural Sciences.

Prof Dirk Opperman, a distinguished biochemist in the Department of Microbiology and Biochemistry, recently (21 May 2024) delivered his inaugural lecture on the Bloemfontein Campus of the University of the Free State (UFS).

The title of his lecture was: Exploring, Exploiting, and Evolving Life at the Atomic Level.

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation at the UFS, welcomed guests, stating, "An inaugural lecture is a major milestone, celebrating a life’s work that culminates in the title of professor. It marks an important chapter in an academic career, with much more to be achieved in the journey of producing important knowledge.”

He believes that an event such as this highlights the university’s pride in the achievements of its academic staff and aligns with Vision 130. “The UFS is proud to host such lectures, as they are significant moments to reveal and showcase the value of excellence in our knowledge pool in research, teaching, and innovation. As a university, we strive to make a difference through groundbreaking work, particularly in addressing society's challenges,” said Prof Reddy, emphasising that this topic truly speaks to the university’s commitment to impactful work in the hard sciences.

Deciphering the unknown

The topic of the lecture captures the essence of Prof Opperman’s research. He explains that ‘exploring’ refers to the determination of the three-dimensional structures of proteins and enzymes. ‘Exploiting’ involves the use of these enzymes to convert substrates into products of value, and ‘evolving’ pertains to mutating the DNA to change the protein, giving it different functions, activities, selectivity, or specificities.

In his lecture, he remarked that if we know the structures of these proteins and enzymes, we can explore what to do with them and how to change them. According to him, there are the unknown knowns, the unknown unknowns, and the known unknowns. “We may know of specific activities and reactions by microorganisms, but we don’t know which enzyme is responsible; similarly, we can know the reactivity of an enzyme, but not necessarily their true physiological functions. I am trying to figure out all these unknowns,” he said.

In his lecture, he also raised the question of whether AI could replace experimental determination of protein structures. "No, not yet; it is only predictions," he believes, commenting that navigating the unknown unknowns is a dangerous place in science.

Establishing the field of structural biology

Prof Opperman, born and raised in the Free State, completed his undergraduate studies at the UFS. Later, in 2008, he obtained his PhD in Biochemistry from the same university. Following his doctoral studies, he conducted postdoctoral research on directed evolution under the guidance of Prof Manfred T Reetz at the Max Planck Institute for Coal Research in Germany, one of the world’s top institutions.

In 2010, he was appointed to the Department of Microbiology and Biochemistry at the UFS, where he has since established the field of structural biology, setting up the infrastructure essential for the advancement thereof. This includes equipment, techniques, and methods for determining the three-dimensional structure of proteins. “It is done using protein crystallisation and then X-ray diffraction,” he explains. Most of these X-ray diffraction experiments are then performed at particle accelerators called synchrotrons, such as Diamond Light Source (UK), which can produce intense X-rays.

His current research explores the interface of evolutionary and structure-function relationships of biocatalysts, with a particular focus on their application in green chemistry. Prof Opperman says that understanding both the structure and the function of an enzyme allows one to manipulate it to perform other functions.

Contributing to the broader goals of sustainable development

One of the projects he is working on highlights the potential for sustainable practices in waste management. Prof Opperman is currently part of a European Research Area Network Cofund partnership on Food Systems and Climate (FOSC), which focuses on developing biocatalysts for upcycling waste. An aspect of this work involves studying enzymes that degrade feathers, thereby converting feather waste into useful products such as fertiliser.

Regarding the contribution of his research to the broader goals of sustainable development and environmental protection, he says that enzymes are the base for biotechnology and the bioeconomy. “They can be sustainably produced, the reactions are environmentally friendly, and the resulting products can be classified as natural. There’s no need to use sources that are not sustainable to extract some of these molecules from,” he explains.

His significant contributions to the field are reflected in more than 50 authored and co-authored papers, some of which are published in prestigious journals such as Science, Nature Communications, and Angewandte Chemie. As an NRF B-rated researcher, his work has received funding from various local and international organisations, including industries such as Sasol and the Global Challenges Research Fund.

News Archive

First doctorate in Thoracic Surgery in Africa awarded
2009-05-12

The University of the Free State (UFS) has become the first university in Africa to award a Ph.D. degree in Thoracic Surgery. The degree was conferred on Prof. Anthony Linegar from the university’s Department of Cardiothoracic Surgery during its recent graduation ceremony.

Thoracic surgery is a challenging subspecialty of cardiothoracic surgery. It began in South Africa in the 1940s and is a broad medico-surgical specialist discipline that involves the diagnosis, operative and peri-operative treatment of acquired and congenital non-cardiac ailments of the chest.

Prof. Linegar became the first academic to conduct a mixed methods analysis of this surgical specialty, which included a systematic review of all the research done in this field in South Africa. The title of his thesis is A Model for the Development of Thoracic Surgery in Central South Africa. The research was based on the hypothesis of a performance gap between the burden of disease in the community and the actual service provision. It makes use of systems theory and project management concepts to develop a model aimed at the development of thoracic surgery.

The research proved that there is a significant under provision of clinical services in thoracic surgery. This was quantified to a factor of 20 times less than should be the case, in diseases such as lung and oesophagus cancer. According to Prof. Linegar, there are multiple reasons for this. Listed amongst these reasons is the fact that thoracic surgery is not part of the undergraduate education in medical training. There tends to be a low level of awareness amongst clinicians as to what the thoracic surgeon offers their patients. The diagnostic and referral patterns in primary and secondary health facilities, where diseases must be picked up and referred early, are not functioning well in this regard. In addition, relatively few cardiothoracic surgeons express an interest in thoracic surgery.

Prof. Linegar’s model is named the ATLAS Mode, which is an acronym for the Advancement of Thoracic Surgery through Analysis and Strategic Planning. It includes the raising of awareness of the role of the specialist thoracic surgeon in the treatment of patients with thoracic diseases as part of the solution to the problem. Furthermore, it aims to develop an accessible and sustainable specialist service that adequately provides for the needs of the community, and that is appropriately represented in health administration circles.

His promoters were Prof. Gert van Zyl, Head of the School of Medicine at the UFS, Prof. Peter Goldstraw, from the Imperial College of London, United Kingdom (UK) and Prof. Francis Smit, Head of the Department of Cardiothoracic Surgery at the UFS.

Prof. Linegar has been with the UFS since 2004, is a graduate from Stellenbosch University in 1984 and completed his postgraduate training in Cardiothoracic Surgery at the University of Cape Town. He was granted a Fellowship in Thoracic Surgery at the Royal Brompton Hospital in London, UK and has since held consultant positions at the UFS, Stellenbosch University and in private practice. He has been involved in registrar training since returning from the UK in 1994 and has extensive experience in intensive care medicine. He has published widely, has presented papers at many international conferences, has been invited as a speaker on many occasions and has won awards for best presentation on three occasions.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
12 May 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept