Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 May 2024 | Story Leonie Bolleurs | Photo Supplied
Inaugural
At the inaugural lecture of Prof Dirk Opperman were, from the left: Prof Opperman, Prof Vasu Reddy, Prof Koos Albertyn, Head of the Department of Microbiology and Biochemistry, and Prof Paul Oberholster, Dean of the Faculty of Natural and Agricultural Sciences.

Prof Dirk Opperman, a distinguished biochemist in the Department of Microbiology and Biochemistry, recently (21 May 2024) delivered his inaugural lecture on the Bloemfontein Campus of the University of the Free State (UFS).

The title of his lecture was: Exploring, Exploiting, and Evolving Life at the Atomic Level.

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation at the UFS, welcomed guests, stating, "An inaugural lecture is a major milestone, celebrating a life’s work that culminates in the title of professor. It marks an important chapter in an academic career, with much more to be achieved in the journey of producing important knowledge.”

He believes that an event such as this highlights the university’s pride in the achievements of its academic staff and aligns with Vision 130. “The UFS is proud to host such lectures, as they are significant moments to reveal and showcase the value of excellence in our knowledge pool in research, teaching, and innovation. As a university, we strive to make a difference through groundbreaking work, particularly in addressing society's challenges,” said Prof Reddy, emphasising that this topic truly speaks to the university’s commitment to impactful work in the hard sciences.

Deciphering the unknown

The topic of the lecture captures the essence of Prof Opperman’s research. He explains that ‘exploring’ refers to the determination of the three-dimensional structures of proteins and enzymes. ‘Exploiting’ involves the use of these enzymes to convert substrates into products of value, and ‘evolving’ pertains to mutating the DNA to change the protein, giving it different functions, activities, selectivity, or specificities.

In his lecture, he remarked that if we know the structures of these proteins and enzymes, we can explore what to do with them and how to change them. According to him, there are the unknown knowns, the unknown unknowns, and the known unknowns. “We may know of specific activities and reactions by microorganisms, but we don’t know which enzyme is responsible; similarly, we can know the reactivity of an enzyme, but not necessarily their true physiological functions. I am trying to figure out all these unknowns,” he said.

In his lecture, he also raised the question of whether AI could replace experimental determination of protein structures. "No, not yet; it is only predictions," he believes, commenting that navigating the unknown unknowns is a dangerous place in science.

Establishing the field of structural biology

Prof Opperman, born and raised in the Free State, completed his undergraduate studies at the UFS. Later, in 2008, he obtained his PhD in Biochemistry from the same university. Following his doctoral studies, he conducted postdoctoral research on directed evolution under the guidance of Prof Manfred T Reetz at the Max Planck Institute for Coal Research in Germany, one of the world’s top institutions.

In 2010, he was appointed to the Department of Microbiology and Biochemistry at the UFS, where he has since established the field of structural biology, setting up the infrastructure essential for the advancement thereof. This includes equipment, techniques, and methods for determining the three-dimensional structure of proteins. “It is done using protein crystallisation and then X-ray diffraction,” he explains. Most of these X-ray diffraction experiments are then performed at particle accelerators called synchrotrons, such as Diamond Light Source (UK), which can produce intense X-rays.

His current research explores the interface of evolutionary and structure-function relationships of biocatalysts, with a particular focus on their application in green chemistry. Prof Opperman says that understanding both the structure and the function of an enzyme allows one to manipulate it to perform other functions.

Contributing to the broader goals of sustainable development

One of the projects he is working on highlights the potential for sustainable practices in waste management. Prof Opperman is currently part of a European Research Area Network Cofund partnership on Food Systems and Climate (FOSC), which focuses on developing biocatalysts for upcycling waste. An aspect of this work involves studying enzymes that degrade feathers, thereby converting feather waste into useful products such as fertiliser.

Regarding the contribution of his research to the broader goals of sustainable development and environmental protection, he says that enzymes are the base for biotechnology and the bioeconomy. “They can be sustainably produced, the reactions are environmentally friendly, and the resulting products can be classified as natural. There’s no need to use sources that are not sustainable to extract some of these molecules from,” he explains.

His significant contributions to the field are reflected in more than 50 authored and co-authored papers, some of which are published in prestigious journals such as Science, Nature Communications, and Angewandte Chemie. As an NRF B-rated researcher, his work has received funding from various local and international organisations, including industries such as Sasol and the Global Challenges Research Fund.

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept