Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 May 2024 | Story Leonie Bolleurs | Photo Supplied
Inaugural
At the inaugural lecture of Prof Dirk Opperman were, from the left: Prof Opperman, Prof Vasu Reddy, Prof Koos Albertyn, Head of the Department of Microbiology and Biochemistry, and Prof Paul Oberholster, Dean of the Faculty of Natural and Agricultural Sciences.

Prof Dirk Opperman, a distinguished biochemist in the Department of Microbiology and Biochemistry, recently (21 May 2024) delivered his inaugural lecture on the Bloemfontein Campus of the University of the Free State (UFS).

The title of his lecture was: Exploring, Exploiting, and Evolving Life at the Atomic Level.

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation at the UFS, welcomed guests, stating, "An inaugural lecture is a major milestone, celebrating a life’s work that culminates in the title of professor. It marks an important chapter in an academic career, with much more to be achieved in the journey of producing important knowledge.”

He believes that an event such as this highlights the university’s pride in the achievements of its academic staff and aligns with Vision 130. “The UFS is proud to host such lectures, as they are significant moments to reveal and showcase the value of excellence in our knowledge pool in research, teaching, and innovation. As a university, we strive to make a difference through groundbreaking work, particularly in addressing society's challenges,” said Prof Reddy, emphasising that this topic truly speaks to the university’s commitment to impactful work in the hard sciences.

Deciphering the unknown

The topic of the lecture captures the essence of Prof Opperman’s research. He explains that ‘exploring’ refers to the determination of the three-dimensional structures of proteins and enzymes. ‘Exploiting’ involves the use of these enzymes to convert substrates into products of value, and ‘evolving’ pertains to mutating the DNA to change the protein, giving it different functions, activities, selectivity, or specificities.

In his lecture, he remarked that if we know the structures of these proteins and enzymes, we can explore what to do with them and how to change them. According to him, there are the unknown knowns, the unknown unknowns, and the known unknowns. “We may know of specific activities and reactions by microorganisms, but we don’t know which enzyme is responsible; similarly, we can know the reactivity of an enzyme, but not necessarily their true physiological functions. I am trying to figure out all these unknowns,” he said.

In his lecture, he also raised the question of whether AI could replace experimental determination of protein structures. "No, not yet; it is only predictions," he believes, commenting that navigating the unknown unknowns is a dangerous place in science.

Establishing the field of structural biology

Prof Opperman, born and raised in the Free State, completed his undergraduate studies at the UFS. Later, in 2008, he obtained his PhD in Biochemistry from the same university. Following his doctoral studies, he conducted postdoctoral research on directed evolution under the guidance of Prof Manfred T Reetz at the Max Planck Institute for Coal Research in Germany, one of the world’s top institutions.

In 2010, he was appointed to the Department of Microbiology and Biochemistry at the UFS, where he has since established the field of structural biology, setting up the infrastructure essential for the advancement thereof. This includes equipment, techniques, and methods for determining the three-dimensional structure of proteins. “It is done using protein crystallisation and then X-ray diffraction,” he explains. Most of these X-ray diffraction experiments are then performed at particle accelerators called synchrotrons, such as Diamond Light Source (UK), which can produce intense X-rays.

His current research explores the interface of evolutionary and structure-function relationships of biocatalysts, with a particular focus on their application in green chemistry. Prof Opperman says that understanding both the structure and the function of an enzyme allows one to manipulate it to perform other functions.

Contributing to the broader goals of sustainable development

One of the projects he is working on highlights the potential for sustainable practices in waste management. Prof Opperman is currently part of a European Research Area Network Cofund partnership on Food Systems and Climate (FOSC), which focuses on developing biocatalysts for upcycling waste. An aspect of this work involves studying enzymes that degrade feathers, thereby converting feather waste into useful products such as fertiliser.

Regarding the contribution of his research to the broader goals of sustainable development and environmental protection, he says that enzymes are the base for biotechnology and the bioeconomy. “They can be sustainably produced, the reactions are environmentally friendly, and the resulting products can be classified as natural. There’s no need to use sources that are not sustainable to extract some of these molecules from,” he explains.

His significant contributions to the field are reflected in more than 50 authored and co-authored papers, some of which are published in prestigious journals such as Science, Nature Communications, and Angewandte Chemie. As an NRF B-rated researcher, his work has received funding from various local and international organisations, including industries such as Sasol and the Global Challenges Research Fund.

News Archive

UFS cracks down on crime on campus
2006-03-15

A comprehensive plan to step up the security on the Main Campus of the University of the Free State (UFS) in Bloemfontein, was approved by the Executive Management (EM) this week.

“The plan briefly comprises of the introduction of reasonable and affordable measures that will promote a safe campus and working environment,” said Rev Kiepie Jaftha, Chief Director: Community Service at the UFS.

“With the plan we want to try and create a user friendly, but safe campus,” said Rev Jaftha.

The plan is the result of an intensive investigation about campus security done by an EM task team.

The following measures will be implemented immediately in phases:

The five current vehicle entrances and exits will remain (i.e. the gate at Nelson Mandela Avenue, the gate at Roosmaryn, the gate at Agriculture, the Wynand Mouton Avenue gate and the Furstenburg Road gate).

The number of smaller pedestrian gates will be reduced and security at those remaining will be increased.
The fences around the campus will remain, upgraded and patrolled on a daily basis.

The security measures at high risk areas (e.g. the Kovsie Church) will be stepped up and the fences in these areas will be electrified.

Vehicle exit control will be stepped up at the gates by means of a mixture of electronic and compulsory visual security control.

Public areas, streets and footpaths will be patrolled and shrubs and trees will be cut and pruned. The streets, footpaths and buildings will also be lit. 

Speed reducing mechanisms will be implemented before and after the security control points at all the gates.
Additional staff will be appointed to facilitate the flow of traffic at the gates.

“Over and above these measures, the EM also approved in principle the installation of electronic equipment at all the entrance gates. This will include the installation of cameras,” said Rev Jaftha.

According to Rev Jaftha the installation of the electronic equipment will be complemented by the compulsory cutting and restarting of engines for all vehicles exiting the gates. The measure has been in force since 1 February 2006.

Last year special measures were put in place to safeguard residences and their inhabitants when security guards were placed at all the ladies residences. These measures will stay in force.

“Regular audits will be done to determine the effectiveness of the strategies and systems. Although crime in and around the campus grounds can never be completely eradicated, we want to strive to create an environment on campus and in the workplace where it can be limited,” he said.

Media release
Issued by: Lacea Loader
Media Representative
Tel: (051) 401-2584
Cell: 083 645 2454
E-mail: loaderl.stg@mail.uovs.ac.za
15 March 2006

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept