Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 May 2024 | Story Leonie Bolleurs | Photo Supplied
Inaugural
At the inaugural lecture of Prof Dirk Opperman were, from the left: Prof Opperman, Prof Vasu Reddy, Prof Koos Albertyn, Head of the Department of Microbiology and Biochemistry, and Prof Paul Oberholster, Dean of the Faculty of Natural and Agricultural Sciences.

Prof Dirk Opperman, a distinguished biochemist in the Department of Microbiology and Biochemistry, recently (21 May 2024) delivered his inaugural lecture on the Bloemfontein Campus of the University of the Free State (UFS).

The title of his lecture was: Exploring, Exploiting, and Evolving Life at the Atomic Level.

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation at the UFS, welcomed guests, stating, "An inaugural lecture is a major milestone, celebrating a life’s work that culminates in the title of professor. It marks an important chapter in an academic career, with much more to be achieved in the journey of producing important knowledge.”

He believes that an event such as this highlights the university’s pride in the achievements of its academic staff and aligns with Vision 130. “The UFS is proud to host such lectures, as they are significant moments to reveal and showcase the value of excellence in our knowledge pool in research, teaching, and innovation. As a university, we strive to make a difference through groundbreaking work, particularly in addressing society's challenges,” said Prof Reddy, emphasising that this topic truly speaks to the university’s commitment to impactful work in the hard sciences.

Deciphering the unknown

The topic of the lecture captures the essence of Prof Opperman’s research. He explains that ‘exploring’ refers to the determination of the three-dimensional structures of proteins and enzymes. ‘Exploiting’ involves the use of these enzymes to convert substrates into products of value, and ‘evolving’ pertains to mutating the DNA to change the protein, giving it different functions, activities, selectivity, or specificities.

In his lecture, he remarked that if we know the structures of these proteins and enzymes, we can explore what to do with them and how to change them. According to him, there are the unknown knowns, the unknown unknowns, and the known unknowns. “We may know of specific activities and reactions by microorganisms, but we don’t know which enzyme is responsible; similarly, we can know the reactivity of an enzyme, but not necessarily their true physiological functions. I am trying to figure out all these unknowns,” he said.

In his lecture, he also raised the question of whether AI could replace experimental determination of protein structures. "No, not yet; it is only predictions," he believes, commenting that navigating the unknown unknowns is a dangerous place in science.

Establishing the field of structural biology

Prof Opperman, born and raised in the Free State, completed his undergraduate studies at the UFS. Later, in 2008, he obtained his PhD in Biochemistry from the same university. Following his doctoral studies, he conducted postdoctoral research on directed evolution under the guidance of Prof Manfred T Reetz at the Max Planck Institute for Coal Research in Germany, one of the world’s top institutions.

In 2010, he was appointed to the Department of Microbiology and Biochemistry at the UFS, where he has since established the field of structural biology, setting up the infrastructure essential for the advancement thereof. This includes equipment, techniques, and methods for determining the three-dimensional structure of proteins. “It is done using protein crystallisation and then X-ray diffraction,” he explains. Most of these X-ray diffraction experiments are then performed at particle accelerators called synchrotrons, such as Diamond Light Source (UK), which can produce intense X-rays.

His current research explores the interface of evolutionary and structure-function relationships of biocatalysts, with a particular focus on their application in green chemistry. Prof Opperman says that understanding both the structure and the function of an enzyme allows one to manipulate it to perform other functions.

Contributing to the broader goals of sustainable development

One of the projects he is working on highlights the potential for sustainable practices in waste management. Prof Opperman is currently part of a European Research Area Network Cofund partnership on Food Systems and Climate (FOSC), which focuses on developing biocatalysts for upcycling waste. An aspect of this work involves studying enzymes that degrade feathers, thereby converting feather waste into useful products such as fertiliser.

Regarding the contribution of his research to the broader goals of sustainable development and environmental protection, he says that enzymes are the base for biotechnology and the bioeconomy. “They can be sustainably produced, the reactions are environmentally friendly, and the resulting products can be classified as natural. There’s no need to use sources that are not sustainable to extract some of these molecules from,” he explains.

His significant contributions to the field are reflected in more than 50 authored and co-authored papers, some of which are published in prestigious journals such as Science, Nature Communications, and Angewandte Chemie. As an NRF B-rated researcher, his work has received funding from various local and international organisations, including industries such as Sasol and the Global Challenges Research Fund.

News Archive

New challenges for animal science discussed
2006-04-04

Some of the guests attending the congress were from the left Dr Heinz Meissner (honorary president of the South African Society for Animal Science (SASAS) and senior manager at the Animal Production Institute of the Agricultural Research Council), Mr Paul Bevan (President of SASAS) and Prof Magda Fourie (Vice-Rector:  Academic Planning at the UFS).
Photo: Lacea Loader

New challenges for animal science discussed  

The South African Society for Animal Science (SASAS) is presenting its 41st Congress at the University of the Free State’s (UFS) Main Campus in Bloemfontein. 

The congress started yesterday and will run until Thursday 6 April 2006.  The theme is New challenges for the animal science industries.

It is one of the largest congresses in the 45 years since SASAS was founded in 1961.  Among the delegates 12 African countries are represented, with the biggest delegation from Kenya.  Delegates are also from the United States of America, Iran, Turkey, Germany, the Netherlands and Portugal and African countries like Zimbabwe, Mozambique and Botswana.

“Many of our members play an important role in the training of animal scientists at universities.  The congress is specifically industry orientated so that scientists can interact with farmers through the respective producer organisations,” said Prof HO de Waal, Chairperson of the organising committee and lecturer at the UFS Department of Animal, Wildlife and Grassland Sciences.

According to Dr Heinz Meissner, honorary president of SASAS and a senior manager at the Animal Production Institute of the Agricultural Research Council, the National Livestock Strategy (NLS) Plan clarifies the role and responsibility of the livestock sector. 

“Through this strategy we need to focus on enhancing equitable access and participation in livestock agriculture, improve global competitiveness and profitability of the livestock sector and ensure that the ventures implemented do not over utilise our resources,” said Dr Meissner.

In her welcoming address, Prof Magda Fourie, Vice-Rector:  Academic Planning at the UFS highlighted the related challenges that the UFS will be focusing on specifically over the next five years.  “We have identified five strategic clusters that represent broad areas of excellence in research and post-graduate education.  Two of these are food production, quality and safety for Africa and sustainable development,” she said.

“The food safety and security cluster will focus on the production of food in all its varieties within the African context, encompassing the entire value chain – from production to consumption and nutrition related issues.  This would include a strong emphasis on sustainable production systems,” she said.

According to Prof Fourie the rural development cluster will engage in questions around the role of higher education in sustainable development.  “One of the focus areas in this strategic cluster pertains to sustainable livelihoods.  It refers to a way of approaching development that incorporates all aspects of human livelihoods and means by which people obtain them,” she said.

Prof Fourie said that the challenges we are facing such as food production can only be effectively addressed through collaborative efforts.  “That is why it is important that collaboration takes place between different scientific disciplines, researchers, institutions and countries who are confronted with similar difficulties,” she said.

According to Prof de Waal the congress will give key role players a unique opportunity to present a profile of what they perceive an animal scientist should be and state their specific requirement regarding the animal sciences and its applications. 

“In this way we can determine what the industry’s needs are and we can re-align our curriculum to suit these needs,” said Prof de Waal.

During the next two days, various areas of interest will be discussed.  This includes ruminant and monogastric nutrition, animal physiology, beef, dairy, sheep and ostrich breeding and sustainable farming covering the range from commercial to the small-scale farming level.

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
4 April 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept