Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 May 2024 | Story Leonie Bolleurs | Photo Supplied
Inaugural
At the inaugural lecture of Prof Dirk Opperman were, from the left: Prof Opperman, Prof Vasu Reddy, Prof Koos Albertyn, Head of the Department of Microbiology and Biochemistry, and Prof Paul Oberholster, Dean of the Faculty of Natural and Agricultural Sciences.

Prof Dirk Opperman, a distinguished biochemist in the Department of Microbiology and Biochemistry, recently (21 May 2024) delivered his inaugural lecture on the Bloemfontein Campus of the University of the Free State (UFS).

The title of his lecture was: Exploring, Exploiting, and Evolving Life at the Atomic Level.

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation at the UFS, welcomed guests, stating, "An inaugural lecture is a major milestone, celebrating a life’s work that culminates in the title of professor. It marks an important chapter in an academic career, with much more to be achieved in the journey of producing important knowledge.”

He believes that an event such as this highlights the university’s pride in the achievements of its academic staff and aligns with Vision 130. “The UFS is proud to host such lectures, as they are significant moments to reveal and showcase the value of excellence in our knowledge pool in research, teaching, and innovation. As a university, we strive to make a difference through groundbreaking work, particularly in addressing society's challenges,” said Prof Reddy, emphasising that this topic truly speaks to the university’s commitment to impactful work in the hard sciences.

Deciphering the unknown

The topic of the lecture captures the essence of Prof Opperman’s research. He explains that ‘exploring’ refers to the determination of the three-dimensional structures of proteins and enzymes. ‘Exploiting’ involves the use of these enzymes to convert substrates into products of value, and ‘evolving’ pertains to mutating the DNA to change the protein, giving it different functions, activities, selectivity, or specificities.

In his lecture, he remarked that if we know the structures of these proteins and enzymes, we can explore what to do with them and how to change them. According to him, there are the unknown knowns, the unknown unknowns, and the known unknowns. “We may know of specific activities and reactions by microorganisms, but we don’t know which enzyme is responsible; similarly, we can know the reactivity of an enzyme, but not necessarily their true physiological functions. I am trying to figure out all these unknowns,” he said.

In his lecture, he also raised the question of whether AI could replace experimental determination of protein structures. "No, not yet; it is only predictions," he believes, commenting that navigating the unknown unknowns is a dangerous place in science.

Establishing the field of structural biology

Prof Opperman, born and raised in the Free State, completed his undergraduate studies at the UFS. Later, in 2008, he obtained his PhD in Biochemistry from the same university. Following his doctoral studies, he conducted postdoctoral research on directed evolution under the guidance of Prof Manfred T Reetz at the Max Planck Institute for Coal Research in Germany, one of the world’s top institutions.

In 2010, he was appointed to the Department of Microbiology and Biochemistry at the UFS, where he has since established the field of structural biology, setting up the infrastructure essential for the advancement thereof. This includes equipment, techniques, and methods for determining the three-dimensional structure of proteins. “It is done using protein crystallisation and then X-ray diffraction,” he explains. Most of these X-ray diffraction experiments are then performed at particle accelerators called synchrotrons, such as Diamond Light Source (UK), which can produce intense X-rays.

His current research explores the interface of evolutionary and structure-function relationships of biocatalysts, with a particular focus on their application in green chemistry. Prof Opperman says that understanding both the structure and the function of an enzyme allows one to manipulate it to perform other functions.

Contributing to the broader goals of sustainable development

One of the projects he is working on highlights the potential for sustainable practices in waste management. Prof Opperman is currently part of a European Research Area Network Cofund partnership on Food Systems and Climate (FOSC), which focuses on developing biocatalysts for upcycling waste. An aspect of this work involves studying enzymes that degrade feathers, thereby converting feather waste into useful products such as fertiliser.

Regarding the contribution of his research to the broader goals of sustainable development and environmental protection, he says that enzymes are the base for biotechnology and the bioeconomy. “They can be sustainably produced, the reactions are environmentally friendly, and the resulting products can be classified as natural. There’s no need to use sources that are not sustainable to extract some of these molecules from,” he explains.

His significant contributions to the field are reflected in more than 50 authored and co-authored papers, some of which are published in prestigious journals such as Science, Nature Communications, and Angewandte Chemie. As an NRF B-rated researcher, his work has received funding from various local and international organisations, including industries such as Sasol and the Global Challenges Research Fund.

News Archive

Stem cell research and human cloning: legal and ethical focal points
2004-07-29

   

(Summary of the inaugural lecture of Prof Hennie Oosthuizen, from the Department of Criminal and Medical Law at the Faculty of Law of the University of the Free State.)

 

In the light of stem cell research, research on embryo’s and human cloning it will be fatal for legal advisors and researchers in South Africa to ignore the benefits that new bio-medical development, through research, contain for this country.

Legal advisors across the world have various views on stem cell research and human cloning. In the USA there is no legislation that regulates stem cell research but a number of States adopted legislation that approves stem cell research. The British Parlement gave permission for research on embryonic stem cells, but determined that it must be monitored closely and the European Union is of the opinion that it will open a door for race purification and commercial exploitation of human beings.

In South Africa the Bill on National Health makes provision for therapeutical and non therapeutical research. It also makes provision for therapeutical embryonical stem cell research on fetuses, which is not older than 14 days, as well as for therapeutical cloning under certain circumstances subject to the approval of the Minister. The Bill prohibits reproductive cloning.

Research on human embrio’s is a very controversial issue, here and in the rest of the world.

Researchers believe that the use of stem cell therapy could help to side-step the rejection of newly transplanted organs and tissue and if a bank for stem cell could be built, the shortage of organs for transplants would become something of the past. Stem cells could also be used for healing of Alzheimer’s, Parkinson’s and spinal injuries.

Sources from which stem cells are obtained could also lead to further ethical issues. Stem cells are harvested from mature human cells and embryonic stem cells. Another source to be utilised is to take egg cells from the ovaries of aborted fetuses. This will be morally unacceptable for those against abortions. Linking a financial incentive to that could become more of a controversial issue because the woman’s decision to abort could be influenced. The ideal would be to rather use human fetus tissue from spontaneous abortions or extra-uterine pregnancies than induced abortions.

The potential to obtain stem cells from the blood of the umbilical cord, bone-marrow and fetus tissue and for these cells to arrange themselves is known for quite some time. Blood from the umbilical cord contains many stem cells, which is the origin of the body’s immune and blood system. It is beneficial to bank the blood of a newborn baby’s umbilical cord. Through stem cell transplants the baby or another family member’s life could be saved from future illnesses such as anemia, leukemia and metabolic storing disabilities as well as certain generic immuno disabilities.

The possibility to withdraw stem cells from human embrio’s and to grow them is more useable because it has more treatment possibilities.

With the birth of Dolly the sheep, communities strongly expressed their concern about the possibility that a new cloning technique such as the replacement of the core of a cell will be used in human reproduction. Embryonic splitting and core replacement are two well known techniques that are associated with the cloning process.

I differentiate between reproductive cloning – to create a cloned human embryo with the aim to bring about a pregnancy of a child that is identical to another individual – and therapeutically cloning – to create a cloned human embryo for research purposes and for healing human illnesses.

Worldwide people are debating whether to proceed with therapeutical cloning. There are people for and against it. The biggest ethical objection against therapeutical cloning is the termination of the development of a potential human being.

Children born from cloning will differ from each other. Factors such as the uterus environment and the environment in which the child is growing up will play a role. Cloning create unique children that will grow up to be unique individuals, just like me and you that will develop into a person, just like you and me. If we understand this scientific fact, most arguments against human cloning will disappear.

Infertility can be treated through in vitro conception. This process does not work for everyone. For some cloning is a revolutionary treatment method because it is the only method that does not require patients to produce sperm and egg cells. The same arguments that were used against in vitro conception in the past are now being used against cloning. It is years later and in vitro cloning is generally applied and accepted by society. I am of the opinion that the same will happen with regard to human cloning.

There is an argument that cloning must be prohibited because it is unsafe. Distorted ideas in this regard were proven wrong. Are these distorted ideas justified to question the safety of cloning and the cloning process you may ask. The answer, according to me, is a definite no. Human cloning does have many advantages. That includes assistance with infertility, prevention of Down Syndrome and recovery from leukemia.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept