Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 May 2024 | Story Leonie Bolleurs | Photo Supplied
Inaugural
At the inaugural lecture of Prof Dirk Opperman were, from the left: Prof Opperman, Prof Vasu Reddy, Prof Koos Albertyn, Head of the Department of Microbiology and Biochemistry, and Prof Paul Oberholster, Dean of the Faculty of Natural and Agricultural Sciences.

Prof Dirk Opperman, a distinguished biochemist in the Department of Microbiology and Biochemistry, recently (21 May 2024) delivered his inaugural lecture on the Bloemfontein Campus of the University of the Free State (UFS).

The title of his lecture was: Exploring, Exploiting, and Evolving Life at the Atomic Level.

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation at the UFS, welcomed guests, stating, "An inaugural lecture is a major milestone, celebrating a life’s work that culminates in the title of professor. It marks an important chapter in an academic career, with much more to be achieved in the journey of producing important knowledge.”

He believes that an event such as this highlights the university’s pride in the achievements of its academic staff and aligns with Vision 130. “The UFS is proud to host such lectures, as they are significant moments to reveal and showcase the value of excellence in our knowledge pool in research, teaching, and innovation. As a university, we strive to make a difference through groundbreaking work, particularly in addressing society's challenges,” said Prof Reddy, emphasising that this topic truly speaks to the university’s commitment to impactful work in the hard sciences.

Deciphering the unknown

The topic of the lecture captures the essence of Prof Opperman’s research. He explains that ‘exploring’ refers to the determination of the three-dimensional structures of proteins and enzymes. ‘Exploiting’ involves the use of these enzymes to convert substrates into products of value, and ‘evolving’ pertains to mutating the DNA to change the protein, giving it different functions, activities, selectivity, or specificities.

In his lecture, he remarked that if we know the structures of these proteins and enzymes, we can explore what to do with them and how to change them. According to him, there are the unknown knowns, the unknown unknowns, and the known unknowns. “We may know of specific activities and reactions by microorganisms, but we don’t know which enzyme is responsible; similarly, we can know the reactivity of an enzyme, but not necessarily their true physiological functions. I am trying to figure out all these unknowns,” he said.

In his lecture, he also raised the question of whether AI could replace experimental determination of protein structures. "No, not yet; it is only predictions," he believes, commenting that navigating the unknown unknowns is a dangerous place in science.

Establishing the field of structural biology

Prof Opperman, born and raised in the Free State, completed his undergraduate studies at the UFS. Later, in 2008, he obtained his PhD in Biochemistry from the same university. Following his doctoral studies, he conducted postdoctoral research on directed evolution under the guidance of Prof Manfred T Reetz at the Max Planck Institute for Coal Research in Germany, one of the world’s top institutions.

In 2010, he was appointed to the Department of Microbiology and Biochemistry at the UFS, where he has since established the field of structural biology, setting up the infrastructure essential for the advancement thereof. This includes equipment, techniques, and methods for determining the three-dimensional structure of proteins. “It is done using protein crystallisation and then X-ray diffraction,” he explains. Most of these X-ray diffraction experiments are then performed at particle accelerators called synchrotrons, such as Diamond Light Source (UK), which can produce intense X-rays.

His current research explores the interface of evolutionary and structure-function relationships of biocatalysts, with a particular focus on their application in green chemistry. Prof Opperman says that understanding both the structure and the function of an enzyme allows one to manipulate it to perform other functions.

Contributing to the broader goals of sustainable development

One of the projects he is working on highlights the potential for sustainable practices in waste management. Prof Opperman is currently part of a European Research Area Network Cofund partnership on Food Systems and Climate (FOSC), which focuses on developing biocatalysts for upcycling waste. An aspect of this work involves studying enzymes that degrade feathers, thereby converting feather waste into useful products such as fertiliser.

Regarding the contribution of his research to the broader goals of sustainable development and environmental protection, he says that enzymes are the base for biotechnology and the bioeconomy. “They can be sustainably produced, the reactions are environmentally friendly, and the resulting products can be classified as natural. There’s no need to use sources that are not sustainable to extract some of these molecules from,” he explains.

His significant contributions to the field are reflected in more than 50 authored and co-authored papers, some of which are published in prestigious journals such as Science, Nature Communications, and Angewandte Chemie. As an NRF B-rated researcher, his work has received funding from various local and international organisations, including industries such as Sasol and the Global Challenges Research Fund.

News Archive

Socially inclusive teaching provides solution to Grade 4 literacy challenges
2017-01-23

 Description: Motselisi Malebese Tags: Motselisi Malebese

Mots’elisi Malebese, postdoctoral Fellow of the Faculty
of Education at the University of the Free State (UFS) tackles
Grade 4 literacy challenges.
Photo: Rulanzen Martin

Imagine a teaching approach that inculcates richness of culture and knowledge to individual learners, thus enhancing equity, equality, social justice, freedom, hope and fairness in terms of learning opportunities for all, regardless of learners’ diversity.

This teaching strategy was introduced by Mots’elisi Malebese, postdoctoral Fellow of the Faculty of Education at the University of the Free State (UFS), whose thesis focuses on bringing together different skills, knowledge and expertise in a classroom environment in order to enhance learners’ competence in literacy.

A teaching approach to aid Grade 4 literacy competency
Titled, A Socially Inclusive Teaching Strategy to Respond to Problems of Literacy in a Grade 4 Class, Malebese’s post-doctoral research refers to an approach that improves listening, speaking, reading, writing, technical functioning and critical thinking. Malebese, who obtained her PhD qualification in June this year, says her research confirmed that, currently, Grade 4 is a bottleneck stage, at which learners from a low socio-economic background fall behind in their learning due to the transition from being taught in their home language to English as a medium of instruction.

Malebese, says: “My study, therefore, required practical intervention through participatory action research (PAR) to create conditions that foster space for empowerment.”

PAR indoctrinates a democratic way of living that is equitable, liberating and life-enhancing, by breaking away from traditional teaching methods. It involves forming coalitions with individuals with the least social, cultural and economic power.

Malebese’s thesis was encouraged by previous research that revealed that a lack of readiness for a transitional phase among learners, teachers’ inability to teach literacy efficiently, and poor parental involvement, caused many learners to experience a wide variety of learning barriers.

A co-teaching model was adopted in an effort to create a more socially inclusive classroom. This model involves one teacher providing every learner with the assistance he or she needs to succeed, while another teacher moves around the room and provides assistance to individual learners.

“Learners’ needs are served best by allowing them to demonstrate understanding in a variety of ways, because knowledge is conveyed and accomplished through collaborative work,” Malebese said.

She believes the most important benefit of this model is assuring that learners become teachers of their understanding and experiences through gained knowledge.

Roleplayers get involved using diverse expertise in their field
Teachers, parents and several NGOs played a vital role in Malebese’s study by getting involved in training, sewing and cooking clubs every weekend and during school holidays. English was the medium of teaching and learning in every activity. A lodge, close to the school, offered learners training in mountain biking and hiking. These activities helped learners become tour guides. Storyteller Gcina Mhlophe presented learners with a gift of her latest recorded storytelling CD and books. Every day after school, learners would read, and have drama lessons once a week.

AfriGrow, an organisation that works with communities, the government and the corporate sector to develop sustainable community-driven livelihoods through agricultural and nutrition programmes, provided learners with seedlings, manure and other garden inputs and training on how to start a sustainable food garden. The children were also encouraged to participate in sporting activities like soccer and netball.

“I was aware that I needed a large toolbox of instructional strategies, and had to involve other stakeholders with diverse expertise in their field,” Malebese said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept