Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 May 2024 | Story Leonie Bolleurs | Photo Supplied
Inaugural
At the inaugural lecture of Prof Dirk Opperman were, from the left: Prof Opperman, Prof Vasu Reddy, Prof Koos Albertyn, Head of the Department of Microbiology and Biochemistry, and Prof Paul Oberholster, Dean of the Faculty of Natural and Agricultural Sciences.

Prof Dirk Opperman, a distinguished biochemist in the Department of Microbiology and Biochemistry, recently (21 May 2024) delivered his inaugural lecture on the Bloemfontein Campus of the University of the Free State (UFS).

The title of his lecture was: Exploring, Exploiting, and Evolving Life at the Atomic Level.

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation at the UFS, welcomed guests, stating, "An inaugural lecture is a major milestone, celebrating a life’s work that culminates in the title of professor. It marks an important chapter in an academic career, with much more to be achieved in the journey of producing important knowledge.”

He believes that an event such as this highlights the university’s pride in the achievements of its academic staff and aligns with Vision 130. “The UFS is proud to host such lectures, as they are significant moments to reveal and showcase the value of excellence in our knowledge pool in research, teaching, and innovation. As a university, we strive to make a difference through groundbreaking work, particularly in addressing society's challenges,” said Prof Reddy, emphasising that this topic truly speaks to the university’s commitment to impactful work in the hard sciences.

Deciphering the unknown

The topic of the lecture captures the essence of Prof Opperman’s research. He explains that ‘exploring’ refers to the determination of the three-dimensional structures of proteins and enzymes. ‘Exploiting’ involves the use of these enzymes to convert substrates into products of value, and ‘evolving’ pertains to mutating the DNA to change the protein, giving it different functions, activities, selectivity, or specificities.

In his lecture, he remarked that if we know the structures of these proteins and enzymes, we can explore what to do with them and how to change them. According to him, there are the unknown knowns, the unknown unknowns, and the known unknowns. “We may know of specific activities and reactions by microorganisms, but we don’t know which enzyme is responsible; similarly, we can know the reactivity of an enzyme, but not necessarily their true physiological functions. I am trying to figure out all these unknowns,” he said.

In his lecture, he also raised the question of whether AI could replace experimental determination of protein structures. "No, not yet; it is only predictions," he believes, commenting that navigating the unknown unknowns is a dangerous place in science.

Establishing the field of structural biology

Prof Opperman, born and raised in the Free State, completed his undergraduate studies at the UFS. Later, in 2008, he obtained his PhD in Biochemistry from the same university. Following his doctoral studies, he conducted postdoctoral research on directed evolution under the guidance of Prof Manfred T Reetz at the Max Planck Institute for Coal Research in Germany, one of the world’s top institutions.

In 2010, he was appointed to the Department of Microbiology and Biochemistry at the UFS, where he has since established the field of structural biology, setting up the infrastructure essential for the advancement thereof. This includes equipment, techniques, and methods for determining the three-dimensional structure of proteins. “It is done using protein crystallisation and then X-ray diffraction,” he explains. Most of these X-ray diffraction experiments are then performed at particle accelerators called synchrotrons, such as Diamond Light Source (UK), which can produce intense X-rays.

His current research explores the interface of evolutionary and structure-function relationships of biocatalysts, with a particular focus on their application in green chemistry. Prof Opperman says that understanding both the structure and the function of an enzyme allows one to manipulate it to perform other functions.

Contributing to the broader goals of sustainable development

One of the projects he is working on highlights the potential for sustainable practices in waste management. Prof Opperman is currently part of a European Research Area Network Cofund partnership on Food Systems and Climate (FOSC), which focuses on developing biocatalysts for upcycling waste. An aspect of this work involves studying enzymes that degrade feathers, thereby converting feather waste into useful products such as fertiliser.

Regarding the contribution of his research to the broader goals of sustainable development and environmental protection, he says that enzymes are the base for biotechnology and the bioeconomy. “They can be sustainably produced, the reactions are environmentally friendly, and the resulting products can be classified as natural. There’s no need to use sources that are not sustainable to extract some of these molecules from,” he explains.

His significant contributions to the field are reflected in more than 50 authored and co-authored papers, some of which are published in prestigious journals such as Science, Nature Communications, and Angewandte Chemie. As an NRF B-rated researcher, his work has received funding from various local and international organisations, including industries such as Sasol and the Global Challenges Research Fund.

News Archive

Five mega projects to help reposition the UFS
2008-02-01

The University of the Free State (UFS) today announced that it will focus on five mega-projects to help reposition the UFS in the next five years as one of South Africa’s leading universities that is successfully managing excellence and diversity.

Speaking at the official opening of the university today, the Rector and Vice-Chancellor, Prof. Frederick Fourie, identified the five mega projects as:

  • The successful implementation of strategic academic clusters to focus the teaching and research expertise of the UFS.
  • The development and implementation of new models of teaching and learning.
  • Finding new sources of income (including third-stream income) to minimise dependence on government subsidies and tuition fees.
  • Creating a new institutional culture for the university by finalising the Institutional Charter.
  • The ongoing transformation of the UFS in all its dimensions.

According to Prof. Fourie, the strategic clusters – initiated in 2006 – are a very important initiative which is aimed at making the UFS a world leader in six broad areas. The focus of the six clusters has now been determined. These clusters are not just research based, but will include postgraduate programmes and filter down to undergraduate learning programmes and curricula.

He also indicated that other research at the UFS will continue to be supported and funded as before.

The second project, to establish a new teaching and learning model, is meant to address current success rates which indicate the need for this issue to receive a high priority.

New income streams to enable higher levels of financial sustainability is the third project, especially in view of dwindling government subsidies and limits on student numbers. This is necessary to fund sustained higher levels of investment in the quality of academic activities and in the necessary capacity and facilities.

Prof. Fourie said the fourth project regarding institutional culture is an ongoing effort to create a sense of belonging for all staff and students at the UFS through the adoption of an Institutional Charter for the university.

“What the draft Charter does – in addition to describing overarching values espoused by the institution and its people – is to describe the outlines and constitutive principles of the ‘post-redress’ UFS,” said Prof. Fourie.

The Charter – initially launched in 2007 – is and remains a critical element of guiding transformation effectively and speedily towards a widely-accepted goal. It is a critical element of the “social sustainability and robustness” of a new UFS, especially in tumultuous political times.

The fifth project is the Transformation Plan, launched in 2007. “We simply must pursue this plan diligently, given our commitment to comprehensive and deep transformation, and to best practice transformation. All universities will have to face up to the challenge of transformation and the UFS can break new ground, as it did in the past by managing transformation innovatively and creating a campus where all can find their rightful place,” said Prof. Fourie.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
1 February 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept