Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 May 2024 | Story Leonie Bolleurs | Photo supplied
Dr Yolandi Schoeman
Dr Yolandi Schoeman believes the project is directly contributing to the regeneration and conservation of biodiversity, innovating towards creating unique urban biodiversity markets, and creating a thriving natural habitat that supports ecological balance and resilience.

Tim Briercliffe, Secretary General of the International Association of Horticultural Producers (AIPH), recently congratulated the City of Tshwane for the work done on urban greening and nature-based solutions that resulted in its entry: ‘Republic of South Africa City of Tshwane Pretoria East Urban Biosphere Reserve’ being selected as one of 21 finalists in the Living Green for Biodiversity category of the AIPH World Green City Awards 2024.

The list of finalists comprises the three highest-scoring entries in each of the seven categories. The Tshwane project was entered in the Living Green for Biodiversity and Urban Ecosystem Restoration category as well as the Living Green for Urban Infrastructure and Liveability category.

Dr Yolandi Schoeman, Postdoctoral Fellow/Researcher in Ecological Engineering in the centres for Mineral Biogeochemistry and Environmental Management and the Ecological Engineering Institute of Africa at the University of the Free State (UFS), played a critical role in conceptualising and driving the bio-intelligent approach that is integral to the Tshwane SA Biosphere Reserve project.

She states that being part of a project recognised as a finalist for such a prestigious global award is profoundly gratifying. “It underscores the importance and urgency of our work in ecological engineering and biodiversity conservation, validating our efforts to create resilient urban ecosystems that can inspire similar initiatives globally.”

Enhancing urban sustainability

According to her, it is one of the university’s flagship projects in Gauteng. “Our team was pivotal in developing the methodological framework that facilitated the integration of ecological, economic, social, and technological dimensions to effectively address climate change, biodiversity loss, disconnections in coupled human and natural systems, and enhance urban sustainability.”

Dr Schoeman says the project was initiated in the early stages of their investigations into sustainable urban development, with notable developments in 2023, as highlighted during the City of Tshwane Climate Change and Research Conference. She indicates that the project is continuing, with phases that include various baseline research activities, active ecosystem regeneration, continuous monitoring, roll-out of a unique biodiversity citizen science approach, integrated and inclusive stakeholder involvement, creating a unique urban biodiversity market, awareness and capacity building, and moving towards formally applying to the International Union for Conservation of Nature (IUCN) for the formal recognition of the urban biosphere region within the greater Pretoria East area.

She remarks that her inspiration to engage in this project stemmed from a commitment to address the multifaceted challenges posed by climate change and biodiversity loss, particularly in urban settings. “The most remarkable aspect of the project is its innovative approach to integrating urban development with ecological engineering, fostering a sustainable coexistence between humans and nature that serves as a model for cities worldwide,” she says.

She is excited about the impact of the work that has been done. Not only is the project directly contributing to the regeneration and conservation of biodiversity, creating a thriving natural habitat that supports ecological balance and resilience, but it is also impacting the greater Tshwane community. Dr Schoeman believes that the project significantly enhances community engagement and participation, which in turn fosters greater awareness and responsibility towards sustainable living practices.

Crafting practical, impactful solutions

Besides her instrumental role in making an impact, Dr Schoeman also enjoyed the project, particularly the opportunity to collaborate with a diverse group of stakeholders, including local communities, government bodies, and fellow researchers. “This multidisciplinary collaboration has not only enriched the project but has also been instrumental in crafting practical, impactful solutions tailored to the specific needs and characteristics of Tshwane,” she comments.

As a finalist in the Living Green for Biodiversity category of the AIPH World Green City Awards 2024, the city of Tshwane will receive a Highly Commended certificate at an awards ceremony in September in Utrecht, the Netherlands, and will ultimately have the opportunity to win the title of Grand Winner of the 2024 edition of the AIPH World Green City Awards.

News Archive

Renewable energy systems an economical investment for the UFS
2017-06-14

Description: Renewable energy  Tags: Renewable energy

The Qwaqwa Campus Arena equipped with freestanding
roof solar panels.
Photo: iFlair Photography

Renewable energy systems are said to be very expensive to implement initially, but in the long run they provide high economic returns.

With their decision to install renewable energy, the University of the Free State Department of Facilities Planning has now also adopted this innovative technology. They have chosen less capital-intensive solar power-generating options to generate electricity in various buildings and parking areas on all three UFS campuses.

“As per the UFS Energy Management Policy, all designs incorporate efficient, renewable energy sources varying from LED lights to solar power,” says Anton Calitz, Electrical Engineer in University Estates’ Department of Facilities Management.

South Campus taking the lead in renewable energy usage
In December 2016, a total of 26 solar-driven LED street-light poles were installed at the recently built Legae Residence’s parking area and the perimeter security area on the South Campus. This low-maintenance system improves security after dark and is independent of the national power supply, which is an important advantage during power outages. With no requirements for major earthworks and cable setting, operational costs are reduced.

The recently built infrastructure also takes pride in being the first to have a greywater system installed.  This system will also be installed at three other residences on the Bloemfontein Campus in 2017. Greywater is made up of bath, shower, and bathroom sink water. The water is reused for toilet flushing, as well as for irrigation purposes.

Various UFS electrical operations to depend on solar power
On the Bloemfontein and Qwaqwa Campuses, the computer laboratories as well as the Thakaneng Bridge Student Centre and the projected Afromontane Research Centre will be equipped with freestanding roof solar solutions during 2017. These systems are designed to operate independently of the power grid (Eskom).

The systems only operate during sunlight hours when the PV solar panels are heated by the sun, making them suitable for operations such as ventilation fans, water pumps, and small circulation pumps for solar thermal water-heating systems.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept