Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 May 2024 | Story Leonie Bolleurs | Photo supplied
Dr Yolandi Schoeman
Dr Yolandi Schoeman believes the project is directly contributing to the regeneration and conservation of biodiversity, innovating towards creating unique urban biodiversity markets, and creating a thriving natural habitat that supports ecological balance and resilience.

Tim Briercliffe, Secretary General of the International Association of Horticultural Producers (AIPH), recently congratulated the City of Tshwane for the work done on urban greening and nature-based solutions that resulted in its entry: ‘Republic of South Africa City of Tshwane Pretoria East Urban Biosphere Reserve’ being selected as one of 21 finalists in the Living Green for Biodiversity category of the AIPH World Green City Awards 2024.

The list of finalists comprises the three highest-scoring entries in each of the seven categories. The Tshwane project was entered in the Living Green for Biodiversity and Urban Ecosystem Restoration category as well as the Living Green for Urban Infrastructure and Liveability category.

Dr Yolandi Schoeman, Postdoctoral Fellow/Researcher in Ecological Engineering in the centres for Mineral Biogeochemistry and Environmental Management and the Ecological Engineering Institute of Africa at the University of the Free State (UFS), played a critical role in conceptualising and driving the bio-intelligent approach that is integral to the Tshwane SA Biosphere Reserve project.

She states that being part of a project recognised as a finalist for such a prestigious global award is profoundly gratifying. “It underscores the importance and urgency of our work in ecological engineering and biodiversity conservation, validating our efforts to create resilient urban ecosystems that can inspire similar initiatives globally.”

Enhancing urban sustainability

According to her, it is one of the university’s flagship projects in Gauteng. “Our team was pivotal in developing the methodological framework that facilitated the integration of ecological, economic, social, and technological dimensions to effectively address climate change, biodiversity loss, disconnections in coupled human and natural systems, and enhance urban sustainability.”

Dr Schoeman says the project was initiated in the early stages of their investigations into sustainable urban development, with notable developments in 2023, as highlighted during the City of Tshwane Climate Change and Research Conference. She indicates that the project is continuing, with phases that include various baseline research activities, active ecosystem regeneration, continuous monitoring, roll-out of a unique biodiversity citizen science approach, integrated and inclusive stakeholder involvement, creating a unique urban biodiversity market, awareness and capacity building, and moving towards formally applying to the International Union for Conservation of Nature (IUCN) for the formal recognition of the urban biosphere region within the greater Pretoria East area.

She remarks that her inspiration to engage in this project stemmed from a commitment to address the multifaceted challenges posed by climate change and biodiversity loss, particularly in urban settings. “The most remarkable aspect of the project is its innovative approach to integrating urban development with ecological engineering, fostering a sustainable coexistence between humans and nature that serves as a model for cities worldwide,” she says.

She is excited about the impact of the work that has been done. Not only is the project directly contributing to the regeneration and conservation of biodiversity, creating a thriving natural habitat that supports ecological balance and resilience, but it is also impacting the greater Tshwane community. Dr Schoeman believes that the project significantly enhances community engagement and participation, which in turn fosters greater awareness and responsibility towards sustainable living practices.

Crafting practical, impactful solutions

Besides her instrumental role in making an impact, Dr Schoeman also enjoyed the project, particularly the opportunity to collaborate with a diverse group of stakeholders, including local communities, government bodies, and fellow researchers. “This multidisciplinary collaboration has not only enriched the project but has also been instrumental in crafting practical, impactful solutions tailored to the specific needs and characteristics of Tshwane,” she comments.

As a finalist in the Living Green for Biodiversity category of the AIPH World Green City Awards 2024, the city of Tshwane will receive a Highly Commended certificate at an awards ceremony in September in Utrecht, the Netherlands, and will ultimately have the opportunity to win the title of Grand Winner of the 2024 edition of the AIPH World Green City Awards.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept